Have a personal or library account? Click to login
Fabrication of PDMS chips by laser engraving for protein enrichments Cover

Fabrication of PDMS chips by laser engraving for protein enrichments

Open Access
|Mar 2022

References

  1. [1] G. Xiao, J. He, Y. Qiao, F. Wang, Q. Xia, X. Wang, L. Yu, Z. Lu, and C.-M. Li, “Facile and Low-Cost Fabrication of a Thread/Paper-Based Wearable System for Simultaneous Detection of Lactate and pH in Human Sweat”, Advanced Fiber Materials, vol. 2, no. 5, pp. 265-278, 2020.10.1007/s42765-020-00046-8
  2. [2] M. Wang, Y. Tan, D. Li, G. Xu, D. Yin, Y. Xiao, T. Xu, X. Chen, X. Zhu, and X. Shi, “Negative Isolation of Circulating Tumor Cells Using a Microfluidic Platform Integrated with Streptavidin-Functionalized PLGA Nanofibers”, Advanced Fiber Materials, vol. 3, no. 3, pp. 192-202, 2021.10.1007/s42765-021-00075-x
  3. [3] D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly (dimethylsiloxane) microfluidic systems”, Lab on a Chip, vol. 3, no. 3, pp. 141-149, 2003.10.1039/b306158b15100765
  4. [4] C. H. Chen, Y. Lu, M. L. Sin, K. E. Mach, D. D. Zhang, V. Gau, J. C. Liao, and P. K. Wong, “Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels”, Analytical Chemistry, vol. 82, no. 3, pp. 1012-1019, 2010.10.1021/ac9022764
  5. [5] N. A. Papadopoulou, A. B. Florou, and M. I. Prodromidis, “Sensitive determination of iron using disposable Nafion- coated screen-printed graphite electrodes”, Analytical Letters, vol. 51, no. (1-2), pp. 198-208, 2018.10.1080/00032719.2017.1302464
  6. [6] H. Lee, J. Choi, E. Jeong, S. Baek, H. C. Kim, J.-H. Chae, Y. Koh, S. W. Seo, J.-S. Kim, and S. J. Kim, “dCas9-mediated nanoelectrokinetic direct detection of target gene for liquid biopsy”, Nano letters, vol. 18, no. 12, pp. 7642-7650, 2018.10.1021/acs.nanolett.8b03224
  7. [7] A. Perera, D. T. Phan, S. Pudasaini, Y. Liu, and C. Yang, “Enhanced sample pre-concentration by ion concentration polarization on a para n coated converging microfluidic paper based analytical platform”, Biomicrofluidics, vol. 14, no. 1, pp, 014103, 2020.10.1063/1.5133946694194431933713
  8. [8] X. Yang, Z. Yin, L. Li, and H. Zou, “The Fabrication of Poly (methyl methacrylate)(PMMA) Microfluidic Chips by Laser Patterning and Electrohydrodynamic (EHD) Printing”, Lasers in Engineering, pp, vol 47(1-3), pp. 183-194, 2020.
  9. [9] N. Yang, C. Chen, P. Wang, J. Sun, and H. Mao, “Structure optimization method of microfluidic paper chip based on image grey-level statistics for chromogenic reaction”, Chemical engineering and processing-process Intensification, vol, 143 pp,, 2019.10.1016/j.cep.2019.107627
  10. [10] R. Chantiwas, S. Park, S. A. Soper, B. C. Kim, S. Takayama, V. Sunkara, H. Hwang, and Y. K. Cho, “Flexible fabrication and applications of polymer nanochannels and nanoslits”, Chemical Society Reviews, vol. 40, no. 7, pp. 3677-3702, 2011.10.1039/c0cs00138d
  11. [11] Y. C. Chiu, E. M. Brey, and L. V. Perez, “A study of the intrinsic autofluorescence of poly (ethylene glycol)-co-((L)-lactic acid) diacrylate”, Journal of Fluorescence, vol. 22, no. 3, pp. 907-913, 2012.10.1007/s10895-011-1029-622218971
  12. [12] Z. Yin and H. Zou, “Experimental and numerical study on PDMS collapse for fabrication of micro/nanochannels”, Journal of Electrical Engineering-Elektrotechnicky Casopis, vol. 67, no. 6, pp. 414-420, 2016.10.1515/jee-2016-0060
  13. [13] S. Schneider, D. Gruner, A. Richter, and P. Loskill, “Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications”, Lab on a Chip, vol. 21, no. 10, pp. 1866-1885, 2021.10.1039/D1LC00188D
  14. [14] J. B. You, B. Lee, Y. Choi, C.-S. Lee, M. Peter, S. G. Im, and S. S. Lee, “Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device”, Biotechniques, vol. 69, no. 1, pp. 47-52, 2020.10.2144/btn-2020-002532372656
  15. [15] Y. Xiangdong, L. Hongzhong, and D. Yucheng, “Research on the cast molding process for high quality PDMS molds”, Microelectronic Engineering, vol. 86, no. 3, pp. 310-313, 2009.10.1016/j.mee.2008.10.011
  16. [16] K. Hyewon, L. Jiyeon, P. Joonhyung, and H. L. Hong, “An improved method of preparing composite poly(dimethylsiloxane) moulds”, Nanotechnology, vol. 17, no. 1, pp. 197-200, 2006.10.1088/0957-4484/17/1/032
  17. [17] T. Wu, C. Ke, and Y. Wang, “Fabrication of trapezoidal cross-sectional microchannels on PMMA with a multi-pass translational method by CO2 laser”, Optik, vol, 183 pp. 953-961, 2019.10.1016/j.ijleo.2019.02.147
  18. [18] E. Nikolidakis and A. Antoniadis, “FEM modeling simulation of laser engraving”, The International Journal of Advanced Manufacturing Technology, pp, vol 105(7-8), pp. 3489-3498, 2019.10.1007/s00170-019-04603-3
  19. [19] S. Prakash and S. Kumar, “Experimental investigations and analytical modeling of multi-pass CO2 laser processing on PMMA”, Precision Engineering, vol, 49 pp. 220-234, 2017.10.1016/j.precisioneng.2017.02.010
  20. [20] S. Prakash and S. Kumar, “Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask”, Optics & Laser Technology, vol, 94 pp. 180-192, 2017.10.1016/j.optlastec.2017.03.034
  21. [21] M. Moradi, O. Mehrabi, T. Azdast, and K. Y. Benyounis, “Enhancement of low power CO2 laser cutting process for injection molded polycarbonate”, Optics & Laser Technology, vol, 96 pp. 208-218, 2017.10.1016/j.optlastec.2017.05.022
  22. [22] S. Zhang and X. Chen, “CO2 laser ablation of microchannel on PMMA substrate for Koch fractal micromixer”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 1, pp, 45, 2019.10.1007/s40430-018-1551-4
  23. [23] K. Kheloufi, E. H. Amara, and A. Benzaoui, “Numerical simulation of transient three-dimensional temperature and kerf formation in laser fusion cutting”, Journal of Heat Transfer, vol. 137, no. 11, pp, 112101, 2015.10.1115/1.4030658
  24. [24] P. Nagarajan and D. Yao, “Uniform Shell Patterning Using Rubber-Assisted Hot Embossing Process. II. Process Analysis”, Polymer Engineering and Science, vol. 51, no. 3, pp. 601-608, 2011.10.1002/pen.21854
  25. [25] H. Hocheng and C. C. Nien, “Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoim-printing process”, Journal of Microlithography Microfabrication and Microsystems, vol. 5, no. 1, pp. 011004, 2006.10.1117/1.2177286
  26. [26] Z. Wang, A. A. Volinsky, and N. D. Gallant, “Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument”, Journal of Applied Polymer Science, vol. 131, no. 22, pp,, 2014.10.1002/app.41050
  27. [27] K. Myeongsub, M. Byeong-Ui, and C. H. Hidrovo, “Enhancement of the Thermo-mechanical Properties of PDMS Molds for the hot Embossing of PMMA Microfluidic Devices”, Journal of Micromechanics and Microengineering, vol. 23, no. 9, pp, 095024, 2013.10.1088/0960-1317/23/9/095024
  28. [28] M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices”, Journal of Micromechanics and Microengineering, vol. 18, no. 6, pp,, 2008.10.1088/0960-1317/18/6/067001
  29. [29] V. Sunkara, D. K. Park, and Y. K. Cho, “Versatile method for bonding hard and soft materials”, RSC Advances, vol. 2, no. 24, pp. 9066-9070, 2012.10.1039/c2ra20880f
  30. [30] K. Kim, S. W. Park, and S. S. Yang, “The optimization of PDMS-PMMA bonding process using silane primer”, Biochip Journal, vol. 4, no. 2, pp. 148-154, 2010.10.1007/s13206-010-4210-0
  31. [31] W. Ouyang, Z. Li, and J. Han, “Pressure-modulated selective electrokinetic trapping for direct enrichment, purification, and detection of nucleic acids in human serum”, Analytical Chemistry, vol. 90, no. 19, pp. 11366-11375, 2018.10.1021/acs.analchem.8b02330
DOI: https://doi.org/10.2478/jee-2022-0006 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 43 - 49
Submitted on: Dec 3, 2021
|
Published on: Mar 12, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Linlin Sun, Ao Ding, Yangbo Chen, Xue Yang, Zhifu Yin, Yuqiang Fang, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.