References
- [1] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular automata”, Nanotechnology, vol. 4, no. 1, pp. 49-57, 1993.10.1088/0957-4484/4/1/004
- [2] R. P. Cowburn and M. E. Welland, “Room Temperature Magnetic Quantum Cellular Automata”, Science, vol. 287, no. 5457, pp. 1466-1468, 2000.10.1126/science.287.5457.1466
- [3] G. Csaba and W. Porod, “Behavior of nanomagnet Logic in the presence of thermal noise”, International Workshop on Computational Electronics, pp. 1-4, 2010.10.1109/IWCE.2010.5677954
- [4] M. T. Niemier and P. M. Kogge, “Problems in designing with qcas: Layout= timing”, International Journal of Circuit Theory and Applications, vol. 29, pp. 49-62, 2001.10.1002/1097-007X(200101/02)29:1<49::AID-CTA132>3.0.CO;2-1
- [5] M. Momenzadeh, J. Huang, M. B. Tahoori, and F. Lombardi, “On the evaluation of scaling of qca devices in the presence of defects at manufacturing”, IEEE transactions on nanotechnology, no. 4, pp. 740-743, 2005.10.1109/TNANO.2005.858611
- [6] M. Raj, L. Gopalakrishnan, and S.-B. Ko, “Design and analysis of novel qca full adder-subtractor”, International Journal of Electronics Letters, pp. 1-14, 2020.10.1080/21681724.2020.1726479
- [7] M. Vacca, S. Frache, M. Graziano. F. Riente, G. Turvani, M. R. Roch, and M. Zamboni, “ToPoliNano: nanomagnet logic circuits design and simulation, Field-Coupled nanocomputing”, Springer, pp. 274-306, 2014.10.1007/978-3-662-45908-9_12
- [8] G. Csaba, M. Becherer, and W. Porod, “Development of cad tools for nano magnetic logic devices,”, International Journal of Circuit Theory and Applications, vol. 41, pp. 634-645, 2013.10.1002/cta.1811
- [9] G. Turvani, L. DAlessandro, and M. Vacca, “Physical simulations of high speed and low power nano magnet logic circuits”, Journal of Low Power Electronics and Applications, no. 8, pp. 37, 2018.10.3390/jlpea8040037
- [10] U. Garlando, M. Walter, R. Wille, F. Riente, F. S. Torres, and R. Drechsler, “ToPoliNano and fiction: Design tools for field-coupled nanocomputing”, 23rd Euromicro Conference on Digital System Design (DSD), IEEE, pp. 408-415, 2020.10.1109/DSD51259.2020.00071
- [11] U. Garlando, F. Riente, G. Cirillo, M. Graziano. and M. Zamboni, “Design and characterization of circuit based on emerging technology: the magcad approach,”, IEEE 18th International Conference on nanotechnology (IEEE-NANO), pp. 1-4, 2018.10.1109/NANO.2018.8626232
- [12] G. Turvani, A. Tohti, M. Bollo, F. Riente, M. Vacca, M. Graziano. and M. Zamboni, “Physical design and testing of nano magnetic architectures”, 9th IEEE International Conference on Design & Technology of Integrated Systems in nanoscale Era (DTIS), pp. 1-6, 2014.10.1109/DTIS.2014.6850676
- [13] U. Garlando, F. Riente, D. Vergallo, M. Graziano. and M. Zamboni, “TopoliNano & magcad: A complete framework for design and simulation of digital circuits based on emerging technologies”, 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD,), IEEE, pp. 153-156, 2018.10.1109/SMACD.2018.8434919
- [14] G. Turvani, F. Riente, M. Graziano. and M. Zamboni, “A quantitative approach to testing in quantum dot cellular automata: nanomagnet logic case”, 10th Conference on PhD Research in Microelectronics and Electronics (PRIME), IEEE, pp. 1-4, 2014.10.1109/PRIME.2014.6872680
- [15] F. Cairo, M. Vacca, M. Graziano. and M. Zamboni, “Domain magnet logic (dml): A new approach to magnetic circuits”, 14th International Conference on nanotechnology, IEEE, pp. 956-961, 2014.10.1109/NANO.2014.6968053
- [16] F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and M. Graziano. “ToPoliNano: A cad tool for nano magnetic logic”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, pp. 1061-1074, 2017.10.1109/TCAD.2017.2650983
- [17] J. Wang, M. Vacca, M. Graziano, M. RuoRoch, and M. Zamboni, “Biosequences analysis on nano magnet logic”, Proceedings of International Conference on IC Design & Technology (ICICDT), IEEE, pp. 131-134, 2013.10.1109/ICICDT.2013.6563320
- [18] M. Graziano, M. Vacca, A. Chiolerio, and M. Zamboni, “An ncl-hdl snake-clock-based magnetic qca architecture”, IEEE Transactions on nanotechnology, no. 10, pp. 1141-1149, 2011.10.1109/TNANO.2011.2118229
- [19] I. Hanninen, H. Lu, E. Blair, C. Lent, and G. Snider, “Field-coupled nanocomputing: Paradigms, progress, and perspectives”, Springer, 2014.
- [20] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “Qcadesigner: A rapid design and simulation tool for quantum-dot cellular automata”, IEEE transactions on nanotechnology, no. 3, pp. 26-31, 2004.10.1109/TNANO.2003.820815
- [21] M. Vacca, M. Graziano, L. Di Crescenzo, A. Chiolerio, A. Lamberti, D. Balma, G. Canavese, F. Celegato, E. Enrico, P. Tiberto, et al, “Magnetoelastic clock system for nano magnet logic”, IEEE Transactions on nanotechnology, no. 13, pp. 963-973, 2014.10.1109/TNANO.2014.2333657
- [22] G. Turvani, F. Riente, M. Graziano, and M. Zamboni, “A quantitative approach to testing in Quantum dot Cellular Automata: nanoMagnet Logic case”, 10th Conference on PhD Research in Microelectronics and Electronics (PRIME), pp. 1-4, 2014.10.1109/PRIME.2014.6872680
- [23] M. Cofano, M. Santoro, Vacca, D. Pala, G. Causapruno, F. Cairo, F. Riente, G. Turvani, M. R. Roch, M. Graziano, et al, “Logic-in-memory, A nano magnet logic implementation”, IEEE Computer Society Annual Symposium on VLSI, IEEE, pp. 286-291, 2015.10.1109/ISVLSI.2015.121
- [24] M. T. Alam, M. J. Siddiq, G. H. Bernstein, M. Niemier, W. Porod, and X. S. Hu, “On-chip clocking for nano magnet logic devices”, IEEE Transactions on nanotechnology,, no. 9, pp. 348-351, 2010.10.1109/TNANO.2010.2041248
- [25] M. Vacca, F. Cairo, G. Turvani, F. Riente, M. Zamboni, and M. Graziano, “Virtual clocking for nano magnet logic”, IEEE Transactions on nanotechnology, no. 15, pp. 962-970, 2016.10.1109/TNANO.2016.2617866
- [26] G. Causapruno, F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and M. Graziano, “Reconfigurable systolic array: From architecture to physical design for nml”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, no. 24, pp. 3208-3217, 2016.10.1109/TVLSI.2016.2547422
- [27] I. Voyiatzis, “An alu-based bist scheme for word-organized rams”, IEEE Transactions on Computers, vol. 57, pp. 577-590, 2008.10.1109/TC.2007.70835
- [28] Y. Guo, T. Dee, and A. Tyagi, “Barrel shifter physical unclonable function based encryption”, Cryptography 2, 22, 2018.10.3390/cryptography2030022
- [29] Z. Li, G. Zhang, W. Zhang, H. Chen, and M. Perkowski, “Synthesis of quantum barrel shifters”, ternational Conference on Cloud Computing and Security, Springer, pp. 450-462, 2018.10.1007/978-3-030-00015-8_39