Have a personal or library account? Click to login
Sparse coded spatial pyramid matching and multi-kernel integrated SVM for non-linear scene classification Cover

Sparse coded spatial pyramid matching and multi-kernel integrated SVM for non-linear scene classification

Open Access
|Dec 2021

References

  1. [1] H. Liu and L. Yu, “Toward integrating feature selection algorithms for classification and clustering”, IEEE Transactions on knowledge and data engineering, vol. 17, no. 4, pp. 491–502, 2005.10.1109/TKDE.2005.66
  2. [2] S. S. Bucak, R. Jin, and A. K. Jain, “Multiple kernel learning for visual object recognition” A review”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1354–1369, 2013.
  3. [3] M. Varma and D. Ray, “Learning the discriminative power invariance trade-o”, in 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8, IEEE, 2007.10.1109/ICCV.2007.4408875
  4. [4] S. Xu and X. An, “Ml2s-svm: multi-label least-squares support vector machine classifiers”, The Electronic Library, 2019.10.1108/EL-09-2019-0207
  5. [5] D. Kancherla, J. D. Bodapati, and N. Veeranjaneyulu, “Effect of different kernels on the performance of an svm based classification”, Int. J. Recent Technol. Eng, no. 5, pp. 1–6, 2019.
  6. [6] S. Bouteldja and A. Kourgli, “A comparative analysis of svm, k-nn, and decision trees for high resolution satellite image scene classification”, in Twelfth International Conference on Machine Vision (ICMV 2019), vol. 11433, p. 114331I, International Society for Optics and Photonics, 2020.
  7. [7] D. Santos, E. Lopez-Lopez, X. M. Pardo, R. Iglesias, S. Barro, and X. R. Fdez-Vidal, “Robust and fast scene recognition in robotics through the automatic identification of meaningful images”, Sensors, vol. 19, no. 18, p. 4024, 2019.10.3390/s19184024676727331540453
  8. [8] X. Bai, J. Du, Z.-R. Wang, and C.-H. Lee, “A hybrid approach to acoustic scene classification based on universal acoustic models”, in Interspeech, pp. 3619–3623, 2019.
  9. [9] S. Nazir, Y. Qian, M. Yousaf, S. A. V. Carroza, E. Izquierdo, and E. Vazquez, “Human action recognition using multi-kernel learning for temporal residual network”, 2019.10.5220/0007371104200426
  10. [10] Y. Wang, W. Yu, and Z. Fang, “Multiple kernel based svm classification of hyperspectral images by combining spectral, spatial, and semantic information”, Remote Sensing, vol. 12, no. 1, p. 120, 2020.10.3390/rs12010120
  11. [11] C. Tong-Tong, L. Chan-Juan, Z. Hai-Lin, Z. Shu-Sen, L. Ying, and D. Xin-Miao, “A multi-instance multi-label scene classification method based on multi-kernel fusion”, in 2015 SAI Intelligent Systems Conference (IntelliSys), pp. 782–787, IEEE, 2015.10.1109/IntelliSys.2015.7361229
  12. [12] H. Hasan, H. Z. Shafri, and M. Habshi, “A comparison between support vector machine (svm) and convolutional neural network (cnn) models for hyperspectral image classification”, in IOP Conference Series: Earth and Environmental Science, vol. 357, p. 012035, IOP Publishing, 2019.
  13. [13] A. Sampath and N. Gomathi, “Fuzzy-based multi-kernel spherical support vector machine for effective handwritten character recognition”, Sadhana, vol. 42, no. 9, pp. 1513–1525, 2017.
  14. [14] H. Patel and H. Mewada, “Analysis of machine learning based scene classification algorithms and quantitative evaluation”, International Journal of Applied Engineering Research, vol. 13, no. 10, pp. 7811–7819, 2018.
  15. [15] F. Zamani and M. Jamzad, “A feature fusion based localized multiple kernel learning system for real world image classification”, EURASIP Journal on image and Video processing, vol. 2017, no. 1, pp. 1–11, 2017.
  16. [16] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms”, in Advances in neural information processing systems, pp. 801–808, 2007.
  17. [17] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “Simplemkl”, Journal of Machine Learning Research, vol. 9, pp. 2491–2521, 2008.
  18. [18] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classification”, in 2009 IEEE Conference on computer vision and pattern recognition, pp. 1794–1801, IEEE, 2009.
  19. [19] H. Liao, J. Xiang, W. Sun, and S. Yu, “Adaptive aggregating multi-resolution feature coding for image classification”, Mathematical Problems in Engineering, vol. 2014, 2014.10.1155/2014/847608
  20. [20] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest neighbor based image classification”, in 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE, 2008.10.1109/CVPR.2008.4587598
  21. [21] G. Lin, C. Fan, H. Zhu, Y. Miu, and X. Kang, “Visual feature coding based on heterogeneous structure fusion for image classification”, Information Fusion, vol. 36, pp. 275–283, 2017..10.1016/j.inffus.2016.12.010
  22. [22] L. Kabbai, M. Abdellaoui, and A. Douik, “Image classification by combining local and global features”, The Visual Computer, vol. 35, no. 5, pp. 679–693, 2019.10.1007/s00371-018-1503-0
  23. [23] W. Luo, J. Li, J. Yang, W. Xu, and J. Zhang, “Convolutional sparse autoencoders for image classification”, IEEE transactions on neural networks and learning systems, vol. 29, no. 7, pp. 3289–3294, 2017.
  24. [24] B. Hosseini and B. Hammer, “Large-margin multiple kernel learning for discriminative features selection and representation learning”, in 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2019.10.1109/IJCNN.2019.8851982
  25. [25] B. Zafar, R. Ashraf, N. Ali, M. Ahmed, S. Jabbar, and S. A. Chatzichristofis, “Image classification by addition of spatial information based on histograms of orthogonal vectors”, PloS one, vol. 13, no. 6, p. e0198175, 2018.10.1371/journal.pone.0198175599330329883455
  26. [26] B. Gajjar and H. M. A. Patani, “Parameterizing sift and sparse dictionary for svm based multi-class object classification”, International Journal of Artificial Intelligence, vol. 19, pp. 95–108, 2021.
  27. [27] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories”, IEEE transactions on pattern analysis and machine intelligence, vol. 28, no. 4, pp. 594–611, 2006.10.1109/TPAMI.2006.7916566508
  28. [28] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of the spatial envelope”, International journal of computer vision, vol. 42, no. 3, pp. 145–175, 2001.10.1023/A:1011139631724
  29. [29] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning natural scene categories”, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 524–531, IEEE, 2005.
  30. [30] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories”, in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2169–2178, IEEE, 2006.
  31. [31] H.-H. Wang, C.-W. Tu, and C.-K. Chiang, “Sparse representation for image classification via paired dictionary learning”, Multimedia Tools and Applications, vol. 78, no. 12, pp. 16945–16963, 2019.
  32. [32] S. Sharan, S. Kininmonth, U. V. Mehta, et al, “Automated cnn based coral reef classification using image augmentation and deep learning”, International Journal of Engineering Intelligent Systems, vol. 29, no. 4, pp. 253–261, 2021.
DOI: https://doi.org/10.2478/jee-2021-0053 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 374 - 380
Submitted on: May 3, 2021
Published on: Dec 22, 2021
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Bhavinkumar Gajjar, Hiren Mewada, Ashwin Patani, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.