Have a personal or library account? Click to login
Supercapacitors and energy conversion structures based on WS2 and MoS2 disulfides Cover

Supercapacitors and energy conversion structures based on WS2 and MoS2 disulfides

Open Access
|Sep 2021

References

  1. [1] E. L. González, F. I. Llerena, M. S. Pérez, F. R. Iglesias, and J. G. Macho, “Energy evaluation of a solar hydrogen storage facility, Comparison with other electrical energy storage technologies”, International Journal of Hydrogen Energy, vol. 40, no. 15, 2015, pp. 5518-5525.10.1016/j.ijhydene.2015.01.181
  2. [2] A. Gonzlez, E. Goikolea, J. A. Barrena, and R. Mysyk, “Review on supercapacitors, Technologies and materials”, Renewable and Sustainable Energy Reviews, vol. 58, 2016, pp. 1189-1206.10.1016/j.rser.2015.12.249
  3. [3] P. Naskar, A. Maiti, P. Chakraborty, D. Kundu, B. Biswas, and A. Banerjee, “Chemical supercapacitors, a review focusing on metallic compounds and conducting polymers”, Journal of Materials Chemistry A, vol. 9, no. 4, 2021, pp. 1970-2017.10.1039/D0TA09655E
  4. [4] J. Chen, N. Kuriyama, H. Yuan, H. T. Takeshita, and T. Sakai, “Electrochemical hydrogen storage in MoS2 nanotubes”, Journal of the American Chemical Society, vol. 123, no. 47, 2001, pp. 11813-11814.10.1021/ja017121z
  5. [5] S. Ding, J. S. Chen, and X. W. Lou, “Glucoseassisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties”, ChemistryA European Journal, vol. 17, no. 47, 2011, pp. 13142-13145.10.1002/chem.201102480
  6. [6] M. Sun, J. Adjaye, and A. E. Nelson, “Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts”, Applied Catalysis A: General, vol. 263, no. 2, 2004, pp. 131-143.10.1016/j.apcata.2003.12.011
  7. [7] M. M. Baig, E. Pervaiz, M. Yang, and I. H. Gul, “High-performance supercapacitor electrode obtained by directly bonding 2 D materials, hierarchal MoS2 on reduced graphene oxide”, Frontier in Materials, vol. 7, no. 323, 2020.10.3389/fmats.2020.580424
  8. [8] S. Ji, Y. Ma, H. Wang, J. Key, D. J. Brett, and R. Wang, “Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material”, Electrochimica Acta, vol. 219, 2016, pp. 540-546.10.1016/j.electacta.2016.10.058
  9. [9] Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2 D materials for flexible supercapacitors”, Journal of energy chemistry, vol. 27, no. 1, 2018, pp. 57-72.10.1016/j.jechem.2017.10.033
  10. [10] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A practical beginners guide to cyclic voltammetry”, Journal of chemical education, vol. 95, no. 2, 2018, pp. 197-206.10.1021/acs.jchemed.7b00361
  11. [11] T. Y. Chen, Y. H. Chang, C. L. Hsu, K. H. Wei, C. Y. Chiang, and L. J. Li, “Comparative study on MoS2 and WS2 for electrocatalytic water splitting”, International journal of hydrogen energy, vol. 38, no. 28, 2013, pp. 12302-12309.10.1016/j.ijhydene.2013.07.021
  12. [12] D. Liu, X. Chen, D. Li, F. Wang, X. Luo, and B. Yang, “Simulation of MoS2 crystal structure and the experimental study of thermal decomposition”, Journal of Molecular Structure, vol. 980, no. 1-3, 2010, pp. 66-71.10.1016/j.molstruc.2010.06.038
  13. [13] K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, and L. J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates”, Nano letters, vol. 12, no. 3, 2012, pp. 1538-1544.10.1021/nl2043612
  14. [14] K. Krishnamoorthy, M. Premanathan, M. Veerapandian, and S. J. Kim, “Nanostructured molybdenum oxide-based antibacterial paint, effective growth inhibition of various pathogenic bacteria”, Nanotechnology, vol. 25, no. 31, 2014, pp. 315101.10.1088/0957-4484/25/31/315101
  15. [15] N. R. Chodankar, D. P. Dubal, G. S. Gund, and C. D. Lokhande, “Flexible all-solid-stateMnO2 thin films based symmetric super- capacitors”, Electrochimica Acta, vol. 165, 2015, pp. 338-347.10.1016/j.electacta.2015.02.246
  16. [16] J. Chmiola, G. Yushin, R. Dash, and Y. Gogotsi, “Effect of pore size and surface area of carbide derived carbons on specific capacitance”, Journal of Power Sources, vol. 158, no. 1, 2006, pp. 765-772.10.1016/j.jpowsour.2005.09.008
  17. [17] X. Y. Luo, Y. Chen, and Y. Mo, “A review of charge storage in porous carbon-based supercapacitors”, New Carbon Materials, vol. 36, no. 1, 2021, pp. 49-68.10.1016/S1872-5805(21)60004-5
DOI: https://doi.org/10.2478/jee-2021-0035 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 256 - 261
Submitted on: Jul 12, 2021
Published on: Sep 13, 2021
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Peter Ondrejka, Martin Kemény, Matúš Dubina, Patrik Novák, Ivan Hotový, Miroslav Mikolášek, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.