Have a personal or library account? Click to login
Role of earth-abundant selenium in different types of solar cells Cover

Role of earth-abundant selenium in different types of solar cells

By: Tania Dey  
Open Access
|May 2021

References

  1. [1] T. K. Teodor, S. Singh, D. M. Bishop, O. Gunawan, Y. S. Lee, T. S. Gershon, K. W. Brew, P. D. Antunez, and R. Haight, “Ultrathin high band gap solar cells with improved efficiencies from the worlds oldest photovoltaic material”, Nat. Commun., vol. 8, no. 1, pp. 682, Sep. 2017, doi: 10.1038/s41467-017-00582-9.10.1038/s41467-017-00582-9561303328947765
  2. [2] S. Almosni et al, “Material challenges for solar cells in the twenty-first century: directions in emerging technologies”, Sci. Technol. Adv. Mater.,, vol. 19, no. 1, pp. 336-369., Apr. 2018, doi: 10.1080/14686996.2018.1433439.10.1080/14686996.2018.1433439591743629707072
  3. [3] P. Colter, B. Hagar, and S. Bedair, “Tunnel Junctions for III-V Multijunction Solar Cells Review” Crystals, vol. 8, no. 12, pp. 445-459, Nov. 2018, doi: 10.3390/cryst8120445.10.3390/cryst8120445
  4. [4] M. Ochoa, E. Barrigon, L. Barrutia, I. Garcia, I. Rey-Stolle, and C. Algora, “Limiting factors on the semiconductor structure of III-V multijunction solar cells for ultra-high concentration (1000-5000 suns): Limiting factors of multijunction solar cells for ultra-high concentration”, Prog. Photovolt., vol. 24, no. 10, pp. 1332-1345, Jun. 2016, doi: 10.1002/pip.2791.10.1002/pip.2791
  5. [5] G. A. Landis, “Selenium interlayer for high-efficiency multijunction solar cell”, US patent US9418844B1, Aug. 16, 2016.
  6. [6] E. E. Perl, J. Simon, J. F. Geisz, W. Olavarria, M. Young, A. Duda, P. Dippo, D. J. Friedman, and M. A. Steiner (2015), “Development of a 2.0 eV AlGaInP Solar Cell Grown by OMVPE”, Presented at IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, Jun. 14-19, 2015.
  7. [7] T. Dey, “Magnetic nanoparticles and cellulosic nanofibers to remove arsenic and other heavy metals from water”, Nanotechnology for water purification (Ed) T. Dey, Boca Raton, USA: Universal Publishers, 2012, pp. 1-28.
  8. [8] A. Kunioka and T. Nakada, “High-efficiency selenium photovoltaic solar cells”, Jpn. J. Appl. Phys., vol. 21, no. S2, pp. 73-75, 1982.10.7567/JJAPS.21S2.73
  9. [9] T. Dey and D. Naughton, “Nano-porous sol-gel derived hydrophobic glass coating for increased light transmittance through greenhouse”, Mater. Res. Bull., vol. 116, pp. 126-130, Aug. 2019, doi: 10.1016/j.materresbull.2019.04.027.10.1016/j.materresbull.2019.04.027
  10. [10] T. Nakada and A. Kunioka, “Polycrystalline thin-film TiO2 /Se solar cells”, Jpn. J. Appl. Phys., vol. 24, no. 7A, pp. L536-L538, 1985.10.1143/JJAP.24.L536
  11. [11] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, and G. M. L. P. Aponsu, “Nanoporous n-TiO2 /selenium/p-CuCNS photovoltaic cell”, J. Phys. D: Appl. Phys., vol. 31, no. 18, pp. 2326-2330, June 1998, doi: 10.1088/0022-3727/31/18 /019.
  12. [12] K.Wang, Y. Shi, H. Zhang, Y. Xing, Q. Dong, and T. Ma, “Selenium as photoabsorber for inorganicorganic hybrid solar cells”, Phys. Chem. Chem. Phys., vol. 16, no. 42, pp. 23316-23319, Nov. 2014, doi: 10.1039/c4cp02821j.10.1039/C4CP02821J25259378
  13. [13] Y. Tang, “Copper indium gallium selenide thin film solar cells”, Nanostructured solar cells, (Ed) N. Das, InTech Open, 2017, doi: 10.5772/65291.10.5772/65291
  14. [14] A. E. Zaghi, M. Buffiere, J. Koo, G. Brammertz, M. Batuk, C. Verbist, J. Hadermann, W. K. Kim, M. Meuris, J. Poortmans, and J. Vleugels, “Effect of selenium content of CuInSex alloy nanopowder precursors on recrystallization of printed CuInSe2 absorber layers during selenization heat treatment”, lThin Solid Films, vol. 582, pp. 11-17, May 2015, doi: 10.1016/j.tsf.2014.10.003.10.1016/j.tsf.2014.10.003
  15. [15] L. Etgar, “Semiconductor nanocrystals as light harvesters in solar cells”, Materials, vol. 6, no. 2, pp. 445-459, Feb. 2013, doi: 10.3390/ma6020445.10.3390/ma6020445545209128809318
  16. [16] J. Yang, J-Y Kim, J. H. Yu, T-Y Ahn, H. Lee, T-S Choi, Y-W Kim, J. Joo, M. J. Ko, and T. Hyeon, “Copper-indium-selenide quantum dot-sensitized solar cells”, Phys. Chem. Chem. Phys., vol. 15, no. 47, pp. 20517-20525, Nov. 2013, doi: 10.1039/c3cp 54270j.
  17. [17] L. Yang, C. McCue, Q. Zhang, E. Uchaker, Y. Mai, and G. Cao, “Highly efficient quantum dot- sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe)”, Nanoscale, vol. 7, no. 7, pp. 3173-3180, Dec. 2014, doi: 10.1039/C4NR06935H.10.1039/C4NR06935H
  18. [18] M. Zhou, G. Shen, Z. Pan, and X. Zhong, “Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells”, J. Energy Chem., vol. 38, pp. 147-152, Nov. 2019, doi: 10.1016/j.jechem.2018.12.010.10.1016/j.jechem.2018.12.010
  19. [19] K.W. Jonhston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent “Schottky-quantum dot photovoltaics for efficient infrared power conversion” Appl. Phys. Lett. vol. 92, no. 15, pp. 151115:1-151115:3, Apr. 2008, doi: 10.1063/1.2912340.10.1063/1.2912340
  20. [20] D. Ratan, T. Jiang, D. A. Barkhouse, W. Xihua, G. P-A Andras, B. Lukasz, L. Larissa, and E. H. Sargent, “Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles”, J. Am. Chem. Soc.,, vol. 132, no. 17, pp. 5952-5953, Apr. 2010, doi: 10.1021/ja1013695.10.1021/ja101369520387887
  21. [21] O. P. Yadav, Y. K. Yadav, A. R. Das, T. Dey, S. Kakkar, and M. L. Singla, “Catalytic oxidation of carbonmonoxide using platinum nanoparticles synthesized in microemulsion”, Asian J. Sci. Res.,, vol. 1, no. 1, pp. 79-84, 2008, doi: 10.3923/ajsr.2008.79.84.10.3923/ajsr.2008.79.84
  22. [22] P. Liu, L. Kloo, and J.M. Gardner, “Cross-linked sulfur-selenium polymers as hole-transporting materials in dye-sensitized solar cells and perovskite solar cells”, ChemPhotoChem, vol. 1, no. 8, pp. 363-368, Aug. 2017, doi: 10.1002/cptc.201700037.10.1002/cptc.201700037
  23. [23] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells”, Nat. Photonics, vol. 8, no. 7, pp. 506-514, Jul. 2014, doi: 10.1038/NPHOTON.2014.134.10.1038/nphoton.2014.134
  24. [24] S. P. Singh and P. Nagarjuna, “Organometal halide perovskites as useful materials in sensitized solar cells”, Dalton Trans.,, vol. 43, no. 14, pp. 5247-5251, Feb. 2014, doi: 10.1039/c3dt53503g.10.1039/c3dt53503g24577264
  25. [25] T. Dey, “UV-reflecting sintered nano-TiO2 thin film on glass for anti-bird strike application”, Surf. Eng., July 2020, doi: 10.1080/02670844.2020.1796900.10.1080/02670844.2020.1796900
  26. [26] Z. Huo, S-H Wei, and W-J Yin, “High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics”, J. Phys. D Appl. Phys., vol. 51, no. 47, Art no. 474003, Sep. 2018, doi: 10.1088/1361-6463/aae1ee.10.1088/1361-6463/aae1ee
  27. [27] Y. Peng, Q. Sun, H. Chen, and W-J Yin, “Disparity of the Nature of the Band Gap between Halide and Chalcogenide Single Perovskites for Solar Cell Absorbers”, J. Phys. Chem. Lett., vol. 10, no. 16, pp. 4566-4570, Aug. 2019, doi: 10.1021/acs.jpclett.9b01657.10.1021/acs.jpclett.9b0165731340644
  28. [28] Y. Y. Sun, M. L. Agiorgousis, P. Zhang, and S. Zhang, “Chalco-genide Perovskites for Photovoltaics”, Nano Lett., vol. 15, no. 1, pp. 581-585, Jan. 2015, doi: 10.1021/nl504046x.10.1021/nl504046x25548882
  29. [29] Y. Nishigaki, T. Nagai, M. Nishiwaki, T. Aizawa, M. Kozawa, K. Hanzawa, Y. Kato, H. Sai, H. Hiramatsu, H. Hosono and H. Fujiwara, “Extraordinary Strong Band-Edge Absorption in Distorted Chalcogenide Perovskites”, Sol. RRL, vol. 4, no. 5, Art no. 1900555, Jan. 2020, doi: 10.1002/solr.201900555.10.1002/solr.201900555
  30. [30] T. Dey and D. Naughton, “Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements”, Environ. Sci. Pollut. Res., vol. 24, no. 15, pp. 13373-13383, May. 2017, doi: 10.1007/s11356-017-8926-4.10.1007/s11356-017-8926-428386893
  31. [31] A. Chatterjee, T. Dey, S. K. Sanyal, and S. P. Moulik, “Thermodynamics of micelle formation and surface chemical behaviour of p-tert-octylphenoxypolyethylene ether (Triton X-100) in aqueous medium”, J. Surface Sci. Technol., vol. 17, no. 1-2, pp. 1-15, 2001.
  32. [32] N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, “Thermodynamic efficiency limit of excitonic solar cells”, Phys. Rev. B, vol. 83, no. 19, Art no. 195326, May 2011, doi: 10.1103/PhysRevB.83.195326.10.1103/PhysRevB.83.195326
  33. [33] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”, J. Appl. Phys.,, vol. 32, no. 3, pp. 510-519, 1961, doi: 10.1063/1.1736034.10.1063/1.1736034
  34. [34] R. V. Angadi, B. Revanasiddesh, and P. K. Vineet Kumar, “A review on different types of materials employed in solar photovoltaic panel”, Int. J. Eng. Res. Technol., vol. 7, no. 8, Art no IJERTCONV7IS08084, 2019.
  35. [35] J. Jean, J. Xiao, R. Nick, N. Moody, M. Nasilowski, M. Bawendi, and V. Bulovi´c, “Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics”, Energy Environ. Sci., vol. 11, no. 9, pp. 2295-2305, Jul. 2018, doi: 10.1039/C8EE01348A.10.1039/C8EE01348A
DOI: https://doi.org/10.2478/jee-2021-0019 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 132 - 139
Submitted on: Mar 22, 2021
Published on: May 12, 2021
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Tania Dey, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.