[1] D. Gangwar, S. Das, R. L. Yadava, and B. K. Kanaujia, “Circularly Polarized Inverted Stacked High Gain Antenna with Frequency Selective Surface”, Microwave and Optical Technology Letters, vol. 58, no. 3, pp. 732–740, 2016.10.1002/mop.29656
[2] Y. Li, R. Mittra, B. Zeng, G. Lu, Z. Li, J. Liu, C. W. Chen, and D. C. Chang, “Directivity Enhancement of Fabry-Perot Antenna by Using a Stepped-Dielectric Slab Superstrate”, Microwave and Optical Technology Letters, vol. 54, no. 3, pp. 711–715, 2012.10.1002/mop.26614
[3] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC Antennas, C-Band Point-to-Point Communication Systems”, IEEE Antennas and Propagation Magazine, vol. 58, no. 1, pp. 56–64, 2016.10.1109/MAP.2015.2501240
[4] J. Ju and J. L. Choi,“Broadband High Gain Fabry-Perot Cavity Antenna with Back Radiation Reduction”, Microwave and Optical Technology Letters, vol. 55, no. 5, pp. 975–978, 2013.10.1002/mop.27474
[5] R. M. Hashmi and K. P. Esselle,“A Wideband EBG Resonator Antenna with an Extremely Small Footprint Area”, Microwave and Optical Technology Letters, vol. 57, no. 7, pp. 1531–1535, 2015.
[6] H. Boutayeb, K. Mahdjoubi, A. C. Tarot, and T. A. Denidni, “Directivity of an Antenna Embedded Inside a Fabry-Perot Cavity: Analysis and Design”, Microwave and Optical Technology Letters, vol. 48, no. 1, pp. 12–17, 2006.10.1002/mop.21249
[7] B. A. Zeb and K. P. Esselle, “High-Gain Dual Band Dual-Polarised Electromagnetic Band Gap Resonator Antenna with All-Dielectric Superstrcture”, IET Microwaves Antennas & Propagation, vol. 9, no. 10, pp. 1059–1065, 2015.
[8] A. Chaabane, F. Djahli, H. Attia, and T. A. Denideni, “Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna”, Frequenz vol. 71, no. 5-6, pp. 243–249, 2018.10.1515/freq-2016-0205
[9] A. Pirhadi, M. Hakkak, F. Keshmiri, and R. K. Baee, “Design of Compact Dual Band High Directive Electromagnetic Bandgap (EBG) Resonator Antenna using Artificial Magnetic Conductor”, IEEE Transactions on Antennas and Propagation, vol. 55, no. 6, pp. 1682–1690, 2007.
[10] H. Liu, S. Lei, X. Shi, and L. Li, “Study of Antenna Superstrates using Metamaterials for Directivity Enhancement Based on Fabry-Perot Resonant Cavity”, International Journal of Antennas and Propagation, vol. 2013, Article ID 209741, pp. 1–10, 2013.
[11] A. R. Weily, T. S. Bird, and Y. J. Guo, “A Reconfigurable High-Gain Partially Reflecting Surface Antenna”, IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3382–3390, 2008.
[12] M. L. Abdelghani, H. Attia, and T. A. Denidni, “Dual and Wide Band Fabry Pérot Resonator Antenna for WLAN Applications”, IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 473–476, 2016.10.1109/LAWP.2016.2585087
[13] Z. G. Liu, W. X. Zhang, D. L. Fu, Y. Y. Gu, and Z. Ge, “Broad-band Fabry-Perot Resonator Printed Antennas using FSS Super-strate with Dissimilar Size”, Microwave and Optical Technology Letters, vol. 50, no. 6, pp. 1623–1627, 2008.
[14] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Dual Sub-wavelength Fabry-Perot Cavities for Broadband Highly Directive Antennas”, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1184–1186, 2014.
[15] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Dual-Slot Feeding Technique for Broadband Fabry Perot Cavity Antennas”, IET Microwaves Antennas & Propagation, vol. 9, no. 9, pp. 861–866, 2015.10.1049/iet-map.2014.0530
[16] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Broad-band Sub-Wavelength Profile High Gain Antennas Based on Multi-Layer Metasurfaces”, IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 423–427, 2015.10.1109/TAP.2014.2365825
[17] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Multilayer Partially Reflective Surfaces for Broadband Fabry-Perot Cavity Antennas”, IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 3474–3481, 2014.
[18] N. Wang, J. Li, G. Wei, and L. Talbi, “Wideband Fabry-Perot Resonator Antenna with Two Layers of Dielectric Superstrates”, IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 229–232, 2014.10.1109/LAWP.2014.2360703
[19] F. Qin, S. Gao, G. Wei, and J. Xu, “Broadband Circularly Polarized Fabry-Perot Antenna Integrated with Wideband Phase Shifter for Satellite Communication”, Microwave and Optical Technology Letters, vol. 58, no. 5, pp. 1109–1113, 2016.
[20] N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, “Wide-band Fabry-Perot Resonator Antenna with Two Complementary FSS Layers”, IEEE Transactions on Antennas and Propagation, vol. 62, no. 5, pp. 2463–2471, 2014.
[22] Z. L. Wang, K. Hashimoto, N. Shinohara, and H. Matsumoto, “Frequency-Selective Surface for Microwave Power Transmission”, IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 10, pp. 2039–2041, 1999.
[23] A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al Sarawi, and D. Abbott, “Second Order Terahertz Band Pass Frequency Selective Surface with Miniaturized Elements”, IEEE Transactions on Terahertz Science and Technology vol. 5, no. 5, pp. 761–769, 2015.10.1109/TTHZ.2015.2452813
[25] A. Chaabane, F. Djahli, H. Attia, L. M. Abdelghani, and T. A. Denideni, “Wideband and High-Gain EBG Resonator Antenna Based on Dual Layer PRS”, Microwave and Optical Technology Letters, vol. 59, no. 1, pp. 98–101, 2017.10.1002/mop.30227
[26] A. Chaabane, F. Djahli, H. Attia, and T. A. Denideni, “Antenna Radiation Bandwidth Broadening using Wideband Double-Layer Partially Reflective Surfaces”, IEEE 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM, Montreal, Canada, 10–13 July, 2016.10.1109/ANTEM.2016.7550151