[1] Y. Guo, X. Yin, X. Zhao, D. Yang and Y. Bai, “Hyperspectral Image Classification with SVM and Guided Filter”, EURASIP Journal on Wireless Communications and Networking, Article number: 56, 2019.10.1186/s13638-019-1346-z
[2] F. Zhou, R. Hang, Q. Liu and X. Yuan, “Hyperspectral Image Classification using Spectral-Spatial LSTMs”, Neurocomputing, vol. 328, pp. 39–47, 2019.10.1016/j.neucom.2018.02.105
[3] Y. Chen, N. M. Nasrabadi and T. D. Tran, “Hyperspectral Image Classification via Kernel Sparse Representation”, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 1, pp. 217–231, 2013.10.1109/TGRS.2012.2201730
[4] F. Melgani and L. Bruzzone, “Classification of Hyperspectral Remote Sensing Images with Support Vector Machines”, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790, 2004.
[5] M. Fauvel, J. Chanussot and J. A. Benediktsson, “A Spatial-Spectral Kernel-Based Approach for the Classification of Remote-Sensing Images”, Pattern Recognition, vol. 45, no. 1, pp. 381–392, 2012.10.1016/j.patcog.2011.03.035
[6] G. Camps-Valls and L. Bruzzone, “Kernel-Based Methods for Hyper-Spectral Image Classification”, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6, pp. 1351–1362, 2005.
[7] J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias and J. A. Benediktsson, “Generalized Composite Kernel Framework for Hyper-Spectral Image Classification”, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 9, pp. 4816–4829, 2013.
[8] Y. Chen, N. M. Nasrabadi and T. D. Tran, “Hyperspectral Image Classification using Dictionary-Based Sparse Representation”, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10, pp. 3973–3985, 2011.
[9] J. Li, J. M. Bioucas-Dias and A. Plaza, “Spectral-Spatial Classification of Hyperspectral Data using Loopy Belief Propagation and Active Learning”, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2, pp. 844–856, 2013.10.1109/TGRS.2012.2205263
[10] X. D. Kang, S. Li and J. A. Benediktsson, “Spectral-spatial HyperSpectral Image Classification with Edge-Preserving Filtering”, IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5, pp. 2666–2677, 2014.
[11] G. Cheng, F. Zhu, S. Xiang, Y. Wang and X. Pan,“Semisupervised Hyperspectral Image Classification via Discriminant Analysis and Robust Regression”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 2, pp. 595–608, 2016.10.1109/JSTARS.2015.2471176
[12] Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu, “Deep Learning-Based Classification of Hyperspectral Data”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 2014.
[13] H. Liu, K. Xia, T. Li, J. Ma and E. Owoola, “Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial-Spectral Weight Manifold Embedding”, Sensors 2020, 20, 4413; doi10.3390/s20164413.10.3390/s20164413747247732784692
[17] C. C. Chang and C. J. Lin. “LIBSVM: a Library for Support Vector Machines”, ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 27, pp. 1–27, 2011.10.1145/1961189.1961199