Have a personal or library account? Click to login

Multiscale filter-based hyperspectral image classification with PCA and SVM

Open Access
|Mar 2021

References

  1. [1] Y. Guo, X. Yin, X. Zhao, D. Yang and Y. Bai, “Hyperspectral Image Classification with SVM and Guided Filter”, EURASIP Journal on Wireless Communications and Networking, Article number: 56, 2019.10.1186/s13638-019-1346-z
  2. [2] F. Zhou, R. Hang, Q. Liu and X. Yuan, “Hyperspectral Image Classification using Spectral-Spatial LSTMs”, Neurocomputing, vol. 328, pp. 39–47, 2019.10.1016/j.neucom.2018.02.105
  3. [3] Y. Chen, N. M. Nasrabadi and T. D. Tran, “Hyperspectral Image Classification via Kernel Sparse Representation”, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 1, pp. 217–231, 2013.10.1109/TGRS.2012.2201730
  4. [4] F. Melgani and L. Bruzzone, “Classification of Hyperspectral Remote Sensing Images with Support Vector Machines”, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790, 2004.
  5. [5] M. Fauvel, J. Chanussot and J. A. Benediktsson, “A Spatial-Spectral Kernel-Based Approach for the Classification of Remote-Sensing Images”, Pattern Recognition, vol. 45, no. 1, pp. 381–392, 2012.10.1016/j.patcog.2011.03.035
  6. [6] G. Camps-Valls and L. Bruzzone, “Kernel-Based Methods for Hyper-Spectral Image Classification”, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6, pp. 1351–1362, 2005.
  7. [7] J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias and J. A. Benediktsson, “Generalized Composite Kernel Framework for Hyper-Spectral Image Classification”, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 9, pp. 4816–4829, 2013.
  8. [8] Y. Chen, N. M. Nasrabadi and T. D. Tran, “Hyperspectral Image Classification using Dictionary-Based Sparse Representation”, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10, pp. 3973–3985, 2011.
  9. [9] J. Li, J. M. Bioucas-Dias and A. Plaza, “Spectral-Spatial Classification of Hyperspectral Data using Loopy Belief Propagation and Active Learning”, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2, pp. 844–856, 2013.10.1109/TGRS.2012.2205263
  10. [10] X. D. Kang, S. Li and J. A. Benediktsson, “Spectral-spatial HyperSpectral Image Classification with Edge-Preserving Filtering”, IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5, pp. 2666–2677, 2014.
  11. [11] G. Cheng, F. Zhu, S. Xiang, Y. Wang and X. Pan,“Semisupervised Hyperspectral Image Classification via Discriminant Analysis and Robust Regression”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 2, pp. 595–608, 2016.10.1109/JSTARS.2015.2471176
  12. [12] Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu, “Deep Learning-Based Classification of Hyperspectral Data”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 2014.
  13. [13] H. Liu, K. Xia, T. Li, J. Ma and E. Owoola, “Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial-Spectral Weight Manifold Embedding”, Sensors 2020, 20, 4413; doi10.3390/s20164413.10.3390/s20164413747247732784692
  14. [14] I. T. Jolliffe, Principal Component Analysis, second edition (Springer), 2002.
  15. [15] C. Cortes and V. N. Vapnik, “Support-Vector Networks”, Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.10.1007/BF00994018
  16. [16] S. Damelin and W. Miller, The mathematics of signal processing, Cambridge University Press, ISBN 978-1107601048, 2011.10.1017/CBO9781139003896
  17. [17] C. C. Chang and C. J. Lin. “LIBSVM: a Library for Support Vector Machines”, ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 27, pp. 1–27, 2011.10.1145/1961189.1961199
  18. [18] S. Roweis and L. Saul, “Nonlinear Dimensionality Reduction by Locally Linear Embedding”, Science, vol. 290, no. 5500, pp. 2323–2326, 2000.
DOI: https://doi.org/10.2478/jee-2021-0006 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 40 - 45
Submitted on: Nov 1, 2020
Published on: Mar 18, 2021
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Guang Yi Chen, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.