Have a personal or library account? Click to login
The study of electrohydrodynamic printing by numerical simulation Cover

The study of electrohydrodynamic printing by numerical simulation

By: Xue Yang,  Rui Liu,  Lu Li,  Zhifu Yin,  Kai Chen and  Dong Fang Wang  
Open Access
|Dec 2020

References

  1. [1] T. Qin, J. Y. Dong, and Y. S. Lee, “AC-pulse modulated electrohydrodynamic jet printing and electroless copper deposition for conductive microscale patterning on flexible insulating substrates”, Robotics and Computer-Integrated Manufacturing, vol. 43, pp. 179-187, 2017.10.1016/j.rcim.2015.09.010
  2. [2] J. Park, M. Hardy, S. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing”, Nature Materials, vol. 6, no. 10, pp. 782-789, 2007.10.1038/nmat197417676047
  3. [3] Y. Huang, N. Bu, Y. Duan, Y. Pan, H. Liu, Z. Yin, and Y. Xiong, “Electrohydrodynamic direct-writing”, Nanoscale, vol. 5, no. 24, pp. 12007-12017, 2013.10.1039/c3nr04329k
  4. [4] C. Nguyen, T. T. T. Can, and W. S. Choi, “Electrohydrodynamic jet-sprayed quantum dots for solution-processed light-emitting-diodes”, Optical Materials Express, vol. 8, no. 12, pp. 3738-3747, 2018.10.1364/OME.8.003738
  5. [5] X. Li, G. S. Lee, S. H. Park, H. Kong, T. K. An, and S. H. Kim, “Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors”, Organic Electronics, vol. 62, pp. 357-365, 2018.10.1016/j.orgel.2018.07.027
  6. [6] S. Vijayavenkataraman, S. Thaharah, S. Zhang, W. F. Lu, and J. Y. H. Fuh, “Electrohydrodynamic jet 3D-printed PCL/PAA conductive sca olds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair”, Materials & Design, vol. 162, pp. 171-184, 2019.10.1016/j.matdes.2018.11.044
  7. [7] X. Wang, G. Zheng, Z. Luo, and W. Li, “Current characteristics of various ejection modes in electrohydrodynamic printing”, Aip Advances, vol. 5, no. 12, pp. 127120, 2015.10.1063/1.4938522
  8. [8] L. Guo, Y. Duan, Y. Huang, and Z. Yin, “Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing”, Micro-machines, vol. 9, no. 10, pp. 522, 2018.10.3390/mi9100522621525930424455
  9. [9] A. Lee, H. Jin, H. W. Dang, K. H. Choi, and K. H. Ahn, “Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing”, Langmuir, vol. 29, no. 44, pp. 13630-13639, 2013.10.1021/la403111m
  10. [10] M. Lopez-Herrera, S. Popinet, and M. A. Herrada, “A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid”, Journal of Computational Physics, vol. 230, no. 5, pp. 1939-1955, 2011.10.1016/j.jcp.2010.11.042
  11. [11] S. Mishra, K. L. Barton, A. G. Alleyne, P. M. Ferreira, and J. A. Rogers, “High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet”, Journal of Micromechanics and Microengineering, vol. 20, no. 9, pp. 095026, 2010.10.1088/0960-1317/20/9/095026
  12. [12] T. Collins, K. Sambath, M. T. Harris, and O. A. Basaran, “Universal scaling laws for the disintegration of electrified drops”, Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 13, pp. 4905-4910, 2013.10.1073/pnas.1213708110
  13. [13] M. Rahmanpour, R. Ebrahimi, and A. Pourrajabian, “Numerical simulation of two-phase electrohydrodynamic of stable Taylor cone-jet using a volume-of-fluid approach”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, no. 11, pp. 4443-4453, 2017.10.1007/s40430-017-0832-7
  14. [14] K. Choi, J. U. Park, O. O. Park, P. M. Ferreira, J. G. Georgiadis, and J. A. Rogers, “Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing”, Applied Physics Letters, vol. 92, no. 12, pp. 123109, 2008.10.1063/1.2903700
  15. [15] P. Kebarle and U. H. Verkerk, “Electrospray: From ions in solution to ions in the gas phase, what we know now”, Mass Spec-trometry Reviews, vol. 28, no. 6, pp. 898-917, 2009.10.1002/mas.2024719551695
  16. [16] J. Zeleny, “Instability of electrified liquid surfaces”, Physical review, vol. 10, no. 1, pp. 1, 1917.10.1103/PhysRev.10.1
  17. [17] R. Melcher and G. I. Taylor, “Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses”, Annual Review of Fluid Mechanics, vol. 1, no. 1, pp. 111-146, 1969.10.1146/annurev.fl.01.010169.000551
  18. [18] D. Gao, D. Yao, S. K. Leist, Y. Fei, and J. Zhou, “Mechanisms and modeling of electrohydrodynamic phenomena”, ternational Journal of Bioprinting, vol. 5, no. 1, pp. 166, 2019.10.18063/ijb.v5i1.166741585932782978
DOI: https://doi.org/10.2478/jee-2020-0056 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 413 - 418
Submitted on: Jun 12, 2020
|
Published on: Dec 24, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 Xue Yang, Rui Liu, Lu Li, Zhifu Yin, Kai Chen, Dong Fang Wang, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.