Have a personal or library account? Click to login
Human action recognition using descriptor based on selective finite element analysis Cover

Human action recognition using descriptor based on selective finite element analysis

Open Access
|Dec 2019

References

  1. [1] A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal templates, <em>IEEE Transactions on Pattern Analysis Machine Intelligence</em>, vol. 23, no. 3, pp. 257-267, 2001.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/34.910878" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/34.910878</a></dgdoi:pub-id>
  2. [2] R. Souvenir and J. Babbs, “Learning the viewpoint manifold for action recognition, <em>IEEE International Conference on Computer Vision Pattern Recognition (CVPR’08)</em>, pp. 1-7, 2008.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/CVPR.2008.4587552" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CVPR.2008.4587552</a></dgdoi:pub-id>
  3. [3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Action as space-time shapes, <em>IEEE International Conference on Computer Vision (ICCV’05)</em>, vol. 2, pp. 1395-1402, 2005.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICCV.2005.28" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICCV.2005.28</a></dgdoi:pub-id>
  4. [4] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Action as space-time shapes, <em>IEEE Transaction on Pattern Analysis Machine Intelligence</em>, vol. 29, no. 12, pp. 2247-2253, 2007.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TPAMI.2007.70711" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPAMI.2007.70711</a></dgdoi:pub-id>
  5. [5] K. Guo, P. Ishwa, and J. Konrad, “Action recognition from video using feature covariance matrices, <em>IEEE Transaction on Image Processing</em>, vol. 22, no. 6, pp. 2479-2494, 2013.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TIP.2013.2252622" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TIP.2013.2252622</a></dgdoi:pub-id>
  6. [6] Y. Chen, Z. Li, X. Guo, Y. Zhao, and A. Cai, “A spatio-temporal interest point detector based on vorticity for action recognition, <em>IEEE International Conference on Multimedia Expo Workshop</em>, pp. 1-6, 2013.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICMEW.2013.6618448" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICMEW.2013.6618448</a></dgdoi:pub-id>
  7. [7] M. Laptev, C. Marszalek, and B. Schmid, “Learning realistic human actions from movies, <em>IEEE Conference on Computer Vision Pattern Recognition</em>, pp. 1-8, 2008.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/CVPR.2008.4587756" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CVPR.2008.4587756</a></dgdoi:pub-id>
  8. [8] S. Savarese, A. Delpozo, J. C. Niebles, and L. Fei-fei, “Spatial-temporal correlations for unsupervised action classification, <em>Proceedings</em>, of the IEEE Workshop on Motion Video Computing, pp. 1-8, 2008.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/WMVC.2008.4544068" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/WMVC.2008.4544068</a></dgdoi:pub-id>
  9. [9] M. S. Ryoo and J. K. Aggarwal, “Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities, <em>IEEE 12th International Conference on Computer Vision</em>, pp. 1593-1600, 2009.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICCV.2009.5459361" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICCV.2009.5459361</a></dgdoi:pub-id>
  10. [10] I. Laptev and T. Lindeberg “Space-time interest points, <em>Proceedings Ninth IEEE International Conference on Computer Vision</em>, pp. 432-439, 2003.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICCV.2003.1238378" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICCV.2003.1238378</a></dgdoi:pub-id>
  11. [11] A. Klaser, M. Marszalek and C. Schmid, “A spatio-temporal descriptor based on 3D-gradients, <em>Proceedings of British Machine Vision Conference</em>, pp. 995-1004, 2008.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5244/C.22.99" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5244/C.22.99</a></dgdoi:pub-id>
  12. [12] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense scale-invariant spatio-temporal interest point detector, <em>ECCV 5303</em>, pp. 650-663, 2008.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-540-88688-4_48" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-540-88688-4_48</a></dgdoi:pub-id>
  13. [13] M. Chen and A. Hauptmann, “MoSIFT: Recognizing human actions in surveillance videos, <em>CMU-CS-09-161 2009</em>,.
  14. [14] N. Ballas, L. Yao, C. Pal, and A. Courville, “Delving deeper into convolutional networks for learning video representations, <em>International Conference on Learning Representations 2016</em>,.
  15. [15] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory pooled deep-convolutional descriptors, <em>IEEE Conference on Computer Vision Pattern Recognition</em>, pp. 4305-4314, 2015.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/CVPR.2015.7299059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CVPR.2015.7299059</a></dgdoi:pub-id>
  16. [16] L. Sun, K. Jia, D. Yeung, and B. E. Shi, “Human action recognition using factorized spatio-temporal convolutional networks, <em>IEEE International Conference on Computer Vision (ICCV)</em>, pp. 4597-4605, 2015.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICCV.2015.522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICCV.2015.522</a></dgdoi:pub-id>
  17. [17] D. K. Vishwakarma and K. Singh, “Human activity recognition based on the spatial distribution of gradients at sub-levels of average energy silhouette images, <em>IEEE Transactions on Cognitive Development Systems</em>, vol. 9, no. 4, pp. 316-327, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TCDS.2016.2577044" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TCDS.2016.2577044</a></dgdoi:pub-id>
  18. [18] D. K. Vishwakarma and R. Kapoor, “Hybrid classifier based human activity recognition using the silhouettes ands cells, <em>Expert Systems with Applications</em>, vol. 42, no. 20, pp. 6957-6965, 2015.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2015.04.039" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2015.04.039</a></dgdoi:pub-id>
  19. [19] D. Wu and L. Shao, “Silhouette analysis-based action recognition via exploiting human poses, <em>IEEE Transactions on Circuits Systems for Video Technology</em>, vol. 23, no. 2, pp. 236-243, 2013.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TCSVT.2012.2203731" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TCSVT.2012.2203731</a></dgdoi:pub-id>
  20. [20] D. Weinland, M. Ozuysal, and P. Fua, “Making action recognition robust to occlusions viewpoint changes,” <em>European Conference on Computer Vision</em> (ECCV), pp. 635-648, 2010.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-15558-1_46" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-15558-1_46</a></dgdoi:pub-id>
  21. [21] B. Saghafi and D. Rajan, “Human action recognition using Pose-based discriminant embedding, <em>Signal Processing: Image Communication</em>, vol. 27, no. 1, pp. 96-111, 2012.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.image.2011.05.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.image.2011.05.002</a></dgdoi:pub-id>
  22. [22] A. A. Chaaraoui, P. C. Pérez, and F. Florez-Revuelta, “Silhouette-based human action recognition using sequences of key poses, <em>Pattern Recognition Letters</em>, vol. 34, no. 15, pp. 1799-1807, 2013.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patrec.2013.01.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patrec.2013.01.021</a></dgdoi:pub-id>
  23. [23] G. Goudelis, K. Karpouzis, and S. Kollias, “Exploring trace transform for robust human action recognition, <em>Pattern Recognition</em>, vol. 46, no. 12, pp. 3238-3248, 2013.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2013.06.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2013.06.006</a></dgdoi:pub-id>
  24. [24] R. Touati and M. Mignotte, “MDS-based multi-axial dimensionality reduction model for human action recognition, <em>Canadian Conference on Computer Robot Vision</em>, pp. 262-267, 2014.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/CRV.2014.42" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CRV.2014.42</a></dgdoi:pub-id>
  25. [25] H. Han and X. J. Li, “Human action recognition with sparse geometric features, <em>The Imaging Science Journal</em>, vol. 63, no. 1, pp. 45-53, 2015.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1179/1743131X14Y.0000000091" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1179/1743131X14Y.0000000091</a></dgdoi:pub-id>
  26. [26] Y. Fu, T. Zhang, and W. Wang, “Sparse coding-based space-time video representation for action recognition, <em>Multimedia Tools Applications</em>, vol. 76, no. 10, pp. 12645-12658, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s11042-016-3630-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11042-016-3630-9</a></dgdoi:pub-id>
  27. [27] J. Lei, G. Li, J. Zhang, Q. Guo, and D. Tu, “Continuous action segmentation recognition using hybrid convolutional neural network-hidden Markov model, <em>IET Computer Vision</em>, vol. 10, no. 6, pp. 537-544, 2016.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1049/iet-cvi.2015.0408" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/iet-cvi.2015.0408</a></dgdoi:pub-id>
  28. [28] H. Liu, N. Shu, Q. Tang, and W. Zhang, “Computational model based on the neural network of visual cortex for human action recognition, <em>IEEE Transactions on Neural Networks Learning Systems</em>, vol. 29, no. 5, pp. 1427-1440, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TNNLS.2017.2669522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TNNLS.2017.2669522</a></dgdoi:pub-id>
  29. [29] Y. Shi, Y. Tian, Y. Wang, and T. Huang, “Sequential deep trajectory descriptor for action recognition with threestream CNN, <em>IEEE Transactions on Multimedia</em>, vol. 19, no. 7, pp. 1510-1520, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TMM.2017.2666540" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TMM.2017.2666540</a></dgdoi:pub-id>
  30. [30] 2D Triangular Elements, The University of New Mexico, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.unm.edu/bgreen/ME360/2D%20Triangular%20Elements.pdf">http://www.unm.edu/bgreen/ME360/2D%20Triangular%20Elements.pdf</ext-link>. Accessed 24 February 2010,.
  31. [31] D. K. Jha, T. Kant, and R. K. Singh, “An accurate two dimensional theory for deformation stress analysis of functionally graded thick plates, <em>International Journal of Advanced Structural Engineering</em>, pp. 6-7, 2014.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s40091-014-0062-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40091-014-0062-5</a></dgdoi:pub-id>
  32. [32] J. Dou and J. Li, “Robust human action recognition based on spatiotemporal descriptors motion temporal templates, <em>Optik</em>, vol. 125, no. 7, pp. 1891-1896, 2014.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijleo.2013.10.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijleo.2013.10.022</a></dgdoi:pub-id>
  33. [33] Q. Song, W. Hu, and X. Wenfang, “Robust support vector machine for bullet hole image classification, <em>IEEE Transaction on Systems Man Cybernetics</em>,, vol. 32no. pp. 440-448, 2002.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TSMCC.2002.807277" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TSMCC.2002.807277</a></dgdoi:pub-id>
  34. [34] S. S. Keerthi C.-J. Lin, “Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel, <em>Neural Computation vol</em>, 15, no, 7,, pp. 1667-1689, 2003.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1162/089976603321891855" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/089976603321891855</a></dgdoi:pub-id>
  35. [35] C. Schuldt, I. Laptev, and B. Caputo, “R, <em>ognizing human actions: a local SVM approach</em>, Proceedings of the 17th International Conference on Pattern Recognition Cambridge, UK, 2004,.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICPR.2004.1334462" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICPR.2004.1334462</a></dgdoi:pub-id>
  36. [36] T. Guha and R. K. Ward, “Learning sparse representations for human action recognition, <em>IEEE Transaction on Pattern Analysis Machine Intelligence</em>, vol. 34, no. 8, pp. 1576-1588, 2012.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TPAMI.2011.253" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPAMI.2011.253</a></dgdoi:pub-id>
  37. [37] D. Weinland, R. Ronfard, and E. Boyer, “Free viewpoint action recognition using motion history vol. s, <em>Computer Vision Image Understanding</em>, vol. 104, no. 2-3, pp. 249-257, 2006.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.cviu.2006.07.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cviu.2006.07.013</a></dgdoi:pub-id>
  38. [38] S. A. Rahman, I. Song, M. K. H. Leung, I. Lee, and K. Lee, “Fast action recognition using negative space features, <em>Expert Systems Applications</em>, vol. 41, no. 2, pp. 574-587, 2014.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2013.07.082" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2013.07.082</a></dgdoi:pub-id>
  39. [39] I. Gomez-Conde and D. N. Olivieri, “A KPCA spatio-temporal differential geometric trajectory cloud classifier for recognizing human actions in a CBVR system, <em>Expert Systems Applications</em>, vol. 42, no. 13, pp. 5472-5490, 2015.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2015.03.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2015.03.010</a></dgdoi:pub-id>
  40. [40] L. Juan and O. Gwun, “A comparison of SIFT, PCA-SIFT and SURF, <em>International Journal of Image Processing</em>, vol. 3, no. 4, pp. 143-152, 2009.
  41. [41] Y. Wang and G. Mori, “Human action recognition using semilatent topic models, <em>IEEE Transactions on Pattern Analysis Machine Intelligence</em>, vol. 31, no. 10, pp. 1762-1764, 2009.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TPAMI.2009.43" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPAMI.2009.43</a></dgdoi:pub-id>
  42. [42] L.-M. Xia J.-X. Huang, and L.-Z. Tan, “Human action recognition based on chaotic invariants, <em>Journal of Central University</em>, vol. 20, no. 11, pp. 3171-3179, 2014.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s11771-013-1841-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11771-013-1841-z</a></dgdoi:pub-id>
  43. [43] A. Iosifidis A Tefas and I. Pitas, <em>Discriminant bag of words based representation for human action recognition</em>, Pattern Recognition Letters, vol. 49, no. 1, pp. 185-192, 2014.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patrec.2014.07.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patrec.2014.07.011</a></dgdoi:pub-id>
  44. [44] X. Wu, D. Xu, L. Duan, and J. Luo, “Action recognition using context appearance distribution features, <em>IEEE Conference on Computer Vision Pattern Recognition (CVPR)</em>, pp. 489-496, 2011.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/CVPR.2011.5995624" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CVPR.2011.5995624</a></dgdoi:pub-id>
  45. [45] D.Weinland, M. Özuysal, and P. Fu, “Making action recognition robust to occlusions viewpoint changes”, <em>European Conference on Computer Vision</em> (ECCV), pp. 635-648, 2010.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-15558-1_46" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-15558-1_46</a></dgdoi:pub-id>
  46. [46] E.-A, Mosabbeb, K. Raahemifar, and M. Fathy, “Multi-view human activity recognition in distributed camera sensor networks, <em>Sensors</em>, vol. 13, no. 7, pp. 8750-8770, 2013.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/s130708750" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s130708750</a></dgdoi:pub-id>
  47. [47] J. Wang, H. Zheng, J. Gao, and J. Cen, “Cross-view action recognition based on a statistical translation framework, <em>IEEE Transactions on Circuits Systems for Video Technology</em>, vol. 26, no. 8, pp. 1461-1475, 2016.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TCSVT.2014.2382984" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TCSVT.2014.2382984</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/jee-2019-0077 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 443 - 453
Submitted on: Oct 18, 2019
Published on: Dec 31, 2019
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2019 Rajiv Kapoor, Om Mishra, Madan Mohan Tripathi, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.