Have a personal or library account? Click to login
Banks of filters for implementation of DMWT of an image Cover

Banks of filters for implementation of DMWT of an image

Open Access
|Dec 2019

References

  1. [1] K. Rajakumar and T. Arivoli, “Implementation of Multiwavelet Transform Coding for Lossless Image Compression”, <em>in Proc</em>, of International Conference on Information Communication Embedded Systems Chennai, 2013.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICICES.2013.6508286" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICICES.2013.6508286</a></dgdoi:pub-id>
  2. [2] B. Kai and X. Xiang-Gen, “Image Compression Using a New Discrete Multiwavelet Transform A New Embedded Vector Quantization, <em>IEEE Transactions on Circuits Systems for Video Technology</em>, vol. 10, no. 6, pp. 833-842, 2000.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/76.867920" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/76.867920</a></dgdoi:pub-id>
  3. [3] N. Sriraam and R. Shyamsunder, “3-D Medical Image Compression Using 3-D Wavelet Coders”, <em>Digital Signal Processing</em>, vol. 21, no. 1, pp. 100-109, 2011.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.dsp.2010.06.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.dsp.2010.06.002</a></dgdoi:pub-id>
  4. [4] O. Kováč, P. Lukacs, and I. Gladišová, “Textures classification based on DWT”, <em>Radioelektronika - 28th International Conference</em>, Prague, 2018.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/RADIOELEK.2018.8376379" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/RADIOELEK.2018.8376379</a></dgdoi:pub-id>
  5. [5] O. Kováč and I. Gladišová, “Multifocal images fusion”, <em>Acta Electrotechnica et Informatica</em>, vol. 17, no. 3, pp. 22-26, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.15546/aeei-2017-0022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15546/aeei-2017-0022</a></dgdoi:pub-id>
  6. [6] T. S. Anand and P. Saravanan, “Performance evaluation of image fusion using the multi-wavelet curvelet transforms”, <em>in IEEE-International Conference On Advances Engineering Science And Management</em>, 2012.
  7. [7] S. Bhatnagar and R. C. Jain, “Application of Discrete Multiwavelet Transform in Denoising of Mammographic Images”, <em>Indian Journal of Science Technology</em>, vol. 29, no. 4, pp. 1613-1641, 2016.
  8. [8] V. Bajaj and R. B. Pachori, “Detection of human emotions using features based on the multiwavelet transform of EEG signals”, <em>Brain-Computer Interfaces</em>, pp. 215-240, 2015.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-10978-7_8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-10978-7_8</a></dgdoi:pub-id>
  9. [9] D. Levický, M. Broda, and V. Hajduk, “Universal statistical steganalytic method”, <em>Journal of Electrical Engineering</em>, vol. 68, no. 2, pp. 117-124, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/jee-2017-0016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/jee-2017-0016</a></dgdoi:pub-id>
  10. [10] J. Oravec, J. Turán, and L’. Ovseník, “DWT Steganography with Usage of Scrambling”, <em>Carpathian Journal of Electronic Computer Engineering</em>, vol. 9, no. 1, pp. 26-29, 2016.
  11. [11] T.-C. Hsung, D. Lun, Y.-H. Shum, and K. Ho, “Generalized Discrete Multiwavelet Transform with Embedded Orthogonal Symmetric Prefilter Bank”, <em>IEEE Transactions on Signal Processing</em>, vol. 55, no. 12, pp. 5619-5629, 2007.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TSP.2007.901650" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TSP.2007.901650</a></dgdoi:pub-id>
  12. [12] C. Chui and J. Lian, “A Study of Orthonormal Multi-Wavelets”, <em>Applied Numerical Mathematics</em>, vol. 20, no. 3, pp. 273-298, 1996.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0168-9274(95)00111-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0168-9274(95)00111-5</a></dgdoi:pub-id>
  13. [13] V. Kolev, T. Cooklev, and F. Keinert, “Matrix spectral factorization for SA4 multiwavelet”, <em>Multidimensional Systems Signal Processing</em>, vol. 29, no. 4, pp. 1613-1641, 2018.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s11045-017-0520-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11045-017-0520-x</a></dgdoi:pub-id>
  14. [14] O. Kováč, J. Mihalík, and I. Gladišová, “Convolution implementation with a novel approach of DGHM multiwavelet image transform”, <em>Journal of Electrical Engineering</em>, vol. 68, no. 6, pp. 455-462, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/jee-2017-0080" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/jee-2017-0080</a></dgdoi:pub-id>
  15. [15] X.-G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter, “Design of prefilters for discrete multiwavelet transforms”, <em>IEEE Transactions on signal processing</em>, vol. 44, no. 1, pp. 25-35, 1996.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/78.482009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/78.482009</a></dgdoi:pub-id>
  16. [16] M. B. Martin and A. E. Bell, “New image compression techniques using multiwavelets multiwavelet packets”, <em>EEE Transactions on image processing</em>, vol. 10, no. 4, pp. 500-510, 2001.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/83.913585" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/83.913585</a></dgdoi:pub-id>
  17. [17] G. Donovan, J. Geronimo, D. Hardin, and P. Massopust, “Construction of Orthogonal Wavelets Using Fractal Interpolation Functions”, <em>SIAM Journal on Mathematical Analysis</em>, vol. 27, no. 4, pp. 1158-1192, 1996.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1137/S0036141093256526" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1137/S0036141093256526</a></dgdoi:pub-id>
  18. [18] L. Shen, H. H. Tan, and A. J. Y. Tham, “Symmetric-antisymmetric Orthonormal Multiwavelets Related Scalar Wavelets”, <em>Applied Computational Harmonic Analysis</em>, vol. 8, no. 3, pp. 258-279, 2000.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1006/acha.1999.0288" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/acha.1999.0288</a></dgdoi:pub-id>
  19. [19] H. Guoping and M. Lingjuan, “Cycle-slip detection of GPS carrier phase with methodology of SA4 multi-wavelet transform”, <em>Chinese Journal of Aeronautics</em>, vol. 25, no. 2, pp. 227-235, 2012.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S1000-9361(11)60382-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S1000-9361(11)60382-8</a></dgdoi:pub-id>
  20. [20] V. Strela and A. T. Walden, “Orthogonal biorthogonal multiwavelets for signal denoising image compression”, <em>Wavelet Applications V</em>, vol. 3391, pp. 96-108, 1998.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1117/12.304924" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1117/12.304924</a></dgdoi:pub-id>
  21. [21] S. Radhakrishnan and J. Subramaniam, “Novel Image Compression Using Multiwavelets with SPECK Algorithm”, <em>The International Arab Journal of Information Technology</em>, vol. 5, no. 1, 2008.
  22. [22] The USC-SIPI Image Database, University of Southern California [Online] <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://sipi.usc.edu/database">http://sipi.usc.edu/database</ext-link> [Cit, 27 02 2019].
  23. [23] J. Lebrun and I. Selesnick, “Gröbner bases wavelet design”, <em>Journal of Symbolic Computation</em>, vol. 37, no. 2, pp. 227-259, 2004.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jsc.2002.06.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jsc.2002.06.002</a></dgdoi:pub-id>
  24. [24] J. Zavacký and J. Mihalík, “An Algorithm for Calculation of Wavelets by using Quadrature Mirror Filters Bank”, <em>Acta Elektronica at Informatika</em>, vol. 5, no. 1, pp. 42-50, 2005.
DOI: https://doi.org/10.2478/jee-2019-0076 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 429 - 442
Submitted on: Mar 11, 2019
Published on: Dec 31, 2019
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2019 Ondrej Kováč, Ján Mihalík, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.