Have a personal or library account? Click to login
Magnetic properties of hematite (α − Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution Cover

Magnetic properties of hematite (α − Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution

Open Access
|Sep 2019

References

  1. [1] G. Kandasamy, A. Sudame, P. Bhati, A. Chakrabarty, S. N. Kale, and D. Maity, “Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids”, Journal of colloid and interface science, vol. 514, pp. 534–543, 2018.10.1016/j.jcis.2017.12.06429289736
  2. [2] G. Kandasamy, A. Sudame, T. Luthra, K. Saini and D. Maity, “Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment”, ACS Omega, vol. 3, pp. 3991–4005, 2018.10.1021/acsomega.8b00207
  3. [3] S. M. Suturin, A. M. Korovin, S. V. Gastev, M. P. Volkov, A. A. Sitnikova, D. A. Kirilenko, M. Tabuchi and N. S. Sokolov, “Tunable polymorphism of epitaxial iron oxides in the four-in-one ferroic-on-GaN system with magnetically ordered α-, γ-, ε-Fe2O3, and Fe3O4 layers”, Physical Review Materials, vol. 2, pp. 073-403, 2018.10.1103/PhysRevMaterials.2.073403
  4. [4] M. Tadic, I. Milosevic, S. Kralj, M. Mitric, D. Makovec, M. L. Saboungi and L. Motte, “Synthesis of metastable hard-magnetic ε-Fe2O3 nanoparticles from silica-coated akaganeite nanorods”, Nanoscale, vol. 9, pp. 10579–10584, 2017.10.1039/C7NR03639F
  5. [5] M. Tadic, S. Kralj and L. Kopanja, “Synthesis, particle shape characterization and surface modification of superparamagnetic iron oxide nanochains”, Materials Characterization, vol. 148, pp. 123–133, 2019.10.1016/j.matchar.2018.12.014
  6. [6] M. Tadic, S. Kralj, Y. Lalatonne and L. Motte, “Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties”, Applied Surface Science, vol. 476, pp. 641–646, 2019.10.1016/j.apsusc.2019.01.098
  7. [7] J. Matmin, I. Affendi, S. Ibrahim and S. Endud, “Additive-free rice starch-assisted synthesis of spherical nanostructured hematite for degradation of dye contaminant”, Nanomaterials, vol. 8, pp. 702, 2018.10.3390/nano8090702616327630205567
  8. [8] A. Rufus, N. Sreeju, and D. Philip, “Size tunable biosynthesis and luminescence quenching of nanostructured hematite (α-Fe2O3) for catalytic degradation of organic pollutants”, Journal of Physics and Chemistry of Solids, vol. 124, pp. 221–234, 2019.10.1016/j.jpcs.2018.09.026
  9. [9] A. S. Hassanien and A. A. Akl, “Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures”, Applied Physics A, vol. 124, pp. 752, 2018.10.1007/s00339-018-2180-6
  10. [10] Z. Shaoqiang, T. Dong, Z. Geng, H. Lin, Z. Hua, H. Jun, L. Yi, L. Minxia, H. Yaohua and Z. Wei, “The influence of grain size on the magnetic properties of Fe3O4 nanocrystals synthesized by solvothermal method”, Journal of Sol-Gel Science and Technology, pp. 1–8, 2019.10.1007/s10971-018-4909-2
  11. [11] J. Mohapatra, F. Zeng, K. Elkins, M. Xing, M. Ghimire, S. Yoon, S. R. Mishra and J. P. Liu, “Size-dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: scaling laws across the superparamagnetic size”, Physical Chemistry Chemical Physics, vol. 20, pp. 12879–12887, 2018.10.1039/C7CP08631H
  12. [12] Z. Nemati, J. Alonso, I. Rodrigo, R. Das, E. Garaio, J. A. García, I. Orue, M. H. Phan and H. Srikanth, “Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size”, The Journal of Physical Chemistry C, vol. 122, pp. 2367–2381, 2018.10.1021/acs.jpcc.7b10528
  13. [13] B. Park, B. H. Kim and T. Yu, “Synthesis of spherical and cubic magnetic iron oxide nanocrystals at low temperature in air”, Journal of colloid and interface science, vol. 518, pp. 27–33, 2018.10.1016/j.jcis.2018.02.02629438861
  14. [14] M. Bhushan, Y. Kumar, L. Periyasamy and A. K. Viswanath, “Facile synthesis of Fe/Zn oxide nanocomposites and study of their structural, magnetic, thermal, antibacterial and cytotoxic properties”, Materials Chemistry and Physics, vol. 209, pp. 233–248, 2018.10.1016/j.matchemphys.2018.02.002
  15. [15] A. A. Ati, “Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale”, Journal of Materials Science: Materials in Electronics, vol. 29, pp. 12010–12021, 2018.10.1007/s10854-018-9305-8
  16. [16] E. Aubry, T. Liu, A. Dekens, F. Perry, S. Mangin, T. Hauet and A. Billard, “Synthesis of iron oxide films by reactive magnetron sputtering assisted by plasma emission monitoring”, Materials Chemistry and Physics, vol. 223, pp. 360–365, 2019.10.1016/j.matchemphys.2018.11.010
  17. [17] R. E. Elshater, G. Kawamura, F. Fakhry, T. Meaz, M. A. Amer and A. Matsuda, “Structural phase transition of spinel to hematite of as-prepared Fe2+-Cr nanoferrites by sintering temperature”, Measurement, vol. 132, pp. 272–281, 2019.10.1016/j.measurement.2018.09.021
  18. [18] D. Kubániová, L. Kubíčková, T. Kmječ, K. Závěta, D Nižňanský, P. Brázda, M. Klementová and J. Kohout, “Hematite: Morin temperature of nanoparticles with different size”, Journal of Magnetism and Magnetic Materials, vol. 475, pp. 611–619, 2019.10.1016/j.jmmm.2018.11.126
  19. [19] M. Tadic, S. Kralj, M. Jagodic, D. Hanzel and D. Makovec, “Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment”, Applied Surface Science, vol. 322, pp. 255–264, 2014.10.1016/j.apsusc.2014.09.181
  20. [20] A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar and A. Gadri, “Synthesis, photoluminescence and Magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods”, Physica E: Low-dimensional Systems and Nanostructures, vol. 101, pp. 212–219, 2018.10.1016/j.physe.2018.04.009
  21. [21] O. S. Ivanova, R. D. Ivantsov, I. S. Edelman, E. A. Petrakovskaja, D. A. Velikanov, Y. V. Zubavichus, V. I. Zaikovskii and S. A. Stepanov, “Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd”, Journal of Magnetism and Magnetic Materials, vol. 401, pp. 880–889, 2016.10.1016/j.jmmm.2015.10.126
  22. [22] A. Nikitin, M. Khramtsov, A. Garanina, P. Mogilnikov, N. Sviridenkova, I. Shchetinin, A. Savchenko, M. Abakumov and A. Majouga, “Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia”, Journal of Magnetism and Magnetic Materials, vol. 469, pp. 443–449, 2019.10.1016/j.jmmm.2018.09.014
  23. [23] M. P. Zaytseva, A. G. Muradova, A. I. Sharapaev, E. V. Yurtov, I. S. Grebennikov and A. G. Savchenko, “Fe3O4/SiO2 Core Shell Nanostructures: Preparation and Characterization”, Russian Journal of Inorganic Chemistry, vol. 63, pp. 1684–1688, 2018.10.1134/S0036023618120239
  24. [24] D. Z. Tulebayeva, A. L. Kozlovskiy, I. V. Korolkov, Y. G. Gorin, A. V. Kazantsev, L. Abylgazina, E. E. Shumskaya, E. Y. Kaniukov and M. V. Zdorovets, “Modification of Fe3O4 nanoparticles with carboranes”, Materials Research Express, vol. 5, pp. 105011, 2018.10.1088/2053-1591/aadb08
  25. [25] M. V. Efremova, Y. A. Nalench, E. Myrovali, A. S. Garanina, I. S. Grebennikov, P. K. Gifer, M. A. Abakumov, M. Spasova, M. Angelakeris, A. G. Savchenko and M. Farle, “Size-selected Fe3 O4 Au hybrid nanoparticles for improved magnetism-based theranostics”, Beilstein journal of nanotechnology, vol. 9, pp. 2684–2699, 2018.10.3762/bjnano.9.251
  26. [26] P. Veverka, M. Pashchenko, L. Kubíčková, J. Kuličková, Z. Jirák, R. Havelek, K. Královec, J. Kohout and O. Kaman, “Rod-like particles of silica-coated maghemite: synthesis via akaganeite, characterization and biological properties”, Journal of Magnetism and Magnetic Materials, vol. 476, pp. 149–156, 2019.10.1016/j.jmmm.2018.12.037
  27. [27] I. Shanenkov, A. Sivkov, A. Ivashutenko, T. Medvedeva and I. Shchetinin, “High-energy plasma dynamic synthesis of multi-phase iron oxides containing Fe3O4 and ε-Fe2O3 with possibility of controlling their phase composition”, Journal of Alloys and Compounds, vol. 774, pp. 637–645, 2019.10.1016/j.jallcom.2018.10.019
  28. [28] S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Y. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman and O. N. Martyanov, “α-Fe2O3 nanoparticles embedded in silica xerogelMagnetic metamaterial”, Ceramics International, vol. 44, pp. 17852–17857, 2018.10.1016/j.ceramint.2018.06.254
  29. [29] M. Krajewski, K. Brzozka, M. Tokarczyk, G. Kowalski, S. Lewinska, A. Slawska-Waniewska, W. S. Lin and H. M. Lin, “Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles”, Journal of Magnetism and Magnetic Materials, vol. 458, pp. 349–354, 2018.10.1016/j.jmmm.2018.03.047
  30. [30] H. Mansour, R. Bargougui, C. Autret-Lambert, A. Gadri and S. Ammar, “Co-precipitation synthesis and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities”, Journal of Physics and Chemistry of Solids, vol. 114, pp. 1–7, 2018.10.1016/j.jpcs.2017.11.013
  31. [31] F. Bouhjar, M. Mollar, S. Ullah, B. Marí and B. Bessais, “Influence of a Compact α-Fe2O3 Layer on the Photovoltaic Performance of Perovskite-Based Solar Cells”, Journal of The Electrochemical Society, vol. 165(2), pp. H30–H38, 2018.10.1149/2.1131802jes
  32. [32] C. Busabok, W. Khongwong, P. Somwongsa, P. Ngernchuklin, A. Saensing and S. Kanchanasutha, “Preparation of Near-Infrared (NIR) Reflective Pigment by Solid State Reaction between Fe2O3 and Al2O3”, Key Engineering Materials, vol. 766, pp. 127–132, 2018.10.4028/www.scientific.net/KEM.766.127
  33. [33] J. Ji, Y. Huang, J Yin, X. Zhao, X. Cheng, S. He, X. Li, J. He and J. Liu, “Synthesis and Electromagnetic and Microwave Absorption Properties of Monodispersive Fe3O4/α-Fe2O3 Composites”, ACS Applied Nano Materials, vol. 1, pp. 3935–3944, 2018.10.1021/acsanm.8b00703
  34. [34] L. Chen, X. Zuo, S. Yang, T. Cai and D. Ding, “Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate”, Chemical Engineering Journal, vol. 359, pp. 373–384, 2019.10.1016/j.cej.2018.11.120
  35. [35] H. Xu, X. Zhang and Y. Zhang, “Modification of biochar by Fe2O3 for the removal of pyridine and quinoline”, Environmental technology, vol. 39, pp. 1470–1480, 2018.10.1080/09593330.2017.1332103
  36. [36] E. Dai, P. Wang, Y. Ye, Y. Cai, J. Liu and C. Liang, “Ultrafine nanoparticles conglomerated α-Fe2O3 nanospheres with excellent gas-sensing performance to ethanol molecules”, Materials Letters, vol. 211, pp. 239–242, 2018.10.1016/j.matlet.2017.10.008
  37. [37] H. Tokoro, W. Tarora, A. Namai, M. Yoshikiyo and S. I. Ohkoshi, “Direct Observation of Chemical Conversion from Fe3O4 to ε-Fe2O3 by a Nanosize Wet Process”, Chemistry of Materials, vol. 30, pp. 2888–2894, 2018.10.1021/acs.chemmater.7b03708
  38. [38] C. Dubreil, O. Sainte Catherine, Y. Lalatonne, C. Journé, P. Ou, P. van Endert. and L. Motte, “Tolerogenic iron oxide nanoparticles in type 1 diabetes: biodistribution and pharmacokinetics studies in nonobese diabetic mice”, Small, vol. 14, pp. 1802053, 2018.10.1002/smll.201802053
  39. [39] J. Gupta, A. Prakash, M. K. Jaiswal, A. Agarrwal and D. Bahadur, “Superparamagnetic iron oxide-reduced graphene oxide nanohybrid-a vehicle for targeted drug delivery and hyperthermia treatment of cancer”, Journal of Magnetism and Magnetic Materials, vol. 448, pp. 332–338, 2018.10.1016/j.jmmm.2017.05.084
  40. [40] A. S. Teja and P. Y. Koh, “Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials”, vol. 55, pp.22–45, 2009.10.1016/j.pcrysgrow.2008.08.003
  41. [41] M. Tadic, D. Markovic, V. Spasojevic, V. Kusigerski, M. Remškar, J. Pirnat and Z. Jagličic, “Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matrix”, Journal of alloys and compounds, vol. 441, pp. 291–296, 2007.10.1016/j.jallcom.2006.09.099
  42. [42] M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic and V. Spasojevic, “High concentration of hematite nanoparticles in a silica matrix: structural and magnetic properties”, Journal of Magnetism and Magnetic Materials, vol. 321, pp. 12–16, 2009.10.1016/j.jmmm.2008.07.006
  43. [43] H. M. Lu and X. K. Meng, “Morin temperature and Néel temperature of hematite nanocrystals”, The Journal of Physical Chemistry C, vol. 114, pp. 21291–21295, 2010.10.1021/jp108703b
  44. [44] M. Tadic, M. Panjan, V. Damnjanovic and I. Milosevic, “Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method”, Applied Surface Science, vol. 320, pp. 183–187, 2014.10.1016/j.apsusc.2014.08.193
  45. [45] L. Kopanja, I. Milosevic, M. Panjan, V. Damnjanovic and M. Tadic, “Solgel combustion synthesis, particle shape analysis and magnetic properties of hematite (α-Fe2O3) nanoparticles embedded in an amorphous silica matrix”, Applied Surface Science, vol. 362, pp. 380–386, 2016.10.1016/j.apsusc.2015.11.238
  46. [46] J. Fock, M. F. Hansen, C. Frandsen and S. Morup, “On the interpretation of Mössbauer spectra of magnetic nanoparticles”, Journal of Magnetism and Magnetic Materials, vol. 445, pp. 11–21, 2018.10.1016/j.jmmm.2017.08.070
  47. [47] D. Trpkov, M. Panjan, L. Kopanja and M. Tadic, “Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube-and sphere-like superstructures”, Applied Surface Science, vol. 457, pp. 427–438, 2018.10.1016/j.apsusc.2018.06.224
  48. [48] K. C. Souza, D. S. M. Nelcy and M. B. S. Edésia, “Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia”, Journal of sol-gel science and technology, vol. 53, pp. 418–427, 2010.10.1007/s10971-009-2115-y
  49. [49] S. Kralj, M. Drofenik and D. Makovec, “Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups”, Journal of Nanoparticle Research, vol. 13, pp. 2829–2841, 2011.10.1007/s11051-010-0171-4
  50. [50] P. Innocenzi, “Infrared spectroscopy of solgel derived silica-based films: a spectra-microstructure overview”, Journal of Non-Crystalline Solids, vol. 316, pp. 309–319, 2003.10.1016/S0022-3093(02)01637-X
  51. [51] S. Sun, “Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles”, Advanced Materials, vol. 18, pp. 393–403, 2006.10.1002/adma.200501464
  52. [52] M. Satheesh, A. R. Paloly, C. K. Krishna Sagar, K. G. Suresh and M. J. Bushiri, “Improved Coercivity of Solvothermally Grown Hematite (α-Fe2O3) and Hematite/Graphene Oxide Nanocomposites (α-Fe2O3/GO) at Low Temperature”, Physica status solidi A, vol. 215, pp. 1700705, 2018.10.1002/pssa.201700705
  53. [53] M. M. S. Sanad and M. M. Rashad, “Magnetic properties of hematite-titania nanocomposites from ilmenite leachant solutions”, Journal of Electronic Materials, vol. 46, pp. 4426–4434, 2017.10.1007/s11664-017-5438-4
  54. [54] M. Tadić, N. Čitaković, M. Panjan, Z. Stojanovic, D. Marković and V. Spasojevi, “Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles”, Journal of alloys and compounds, vol. 509, pp. 7639–7644, 2011.10.1016/j.jallcom.2011.04.117
  55. [55] M. Tadic, N. Citakovic, M. Panjan, B. Stanojevic, D. Markovic, D. Jovanovic and V. Spasojevic, “Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) super-structure with high coercivity”, Journal of Alloys and Compounds, vol. 543, pp. 118–124, 2012.10.1016/j.jallcom.2012.07.047
DOI: https://doi.org/10.2478/jee-2019-0044 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 71 - 76
Submitted on: Mar 19, 2019
|
Published on: Sep 28, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Marin Tadic, Matjaz Panjan, Biljana Vucetic Tadic, Jelena Lazovic, Vesna Damnjanovic, Martin Kopani, Lazar Kopanja, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.