Have a personal or library account? Click to login
A scheme for comprehensive computational cost reduction in proper orthogonal decomposition Cover

A scheme for comprehensive computational cost reduction in proper orthogonal decomposition

Open Access
|Sep 2018

References

  1. [1] A. C. Antoulas, “Approximation of Large-Scale Dynamical Systems”, SIAM 2005.10.1137/1.9780898718713
  2. [2] P. Astrid, “Fast Reduced Order Modeling Technique for Large Scale LTV Systems”, In Proceeddings of American Control Conferfence 2004, vol. 1, pp. 762–767.10.23919/ACC.2004.1383697
  3. [3] N. C. Nguyen, A. T. Patera, and J. Peraire,“A ’Best Points’ Interpolation Method for Efficient Approximation of Parametrized Functions”, Int. J.Num.Methods Eng. vol. 73, 2008, pp. 521–543.10.1002/nme.2086
  4. [4] R. Everson and L. Sirovich Karhunen-Loeve, “Procedure for Gappy Data J”, J. Opt. Soc. Am. A vol. 12, 1995, pp. 1657–1664.10.1364/JOSAA.12.001657
  5. [5] K. Willcox, “Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition”, Computers and Fluids vol. 35, 2006, pp. 208–226.10.1016/j.compfluid.2004.11.006
  6. [6] B. Yildirim, C. Chryssostomidis and G. E. Karniadakis, “Efficient Sensor Placement for Ocean Measurements using Low-Dimensional concepts“, Ocean Modeling vol. 273, 2009, pp. 160-173.10.1016/j.ocemod.2009.01.001
  7. [7] K. Carlberg, C. Farhat, J. Cortial and D. Amsallem, “The GNAT Method for Nonlinear Model Reduction: Effective Implementation and Application, to Computational Fluid Dynamics and Turbulent Flows”, Journal of Computational Physics vol. 242, 2013, pp. 623–647.10.1016/j.jcp.2013.02.028
  8. [8] G. Dimitriu, R. Ştefǎnescu and I. M. Navon, “Comparative Numerical Analysis using Reduced-Order Modeling Strategies for Nonlinear Large-Scale Systems” Journal of Computational and Applied Mathematics vol. 310, 2017, pp. 32–43.10.1016/j.cam.2016.07.002
  9. [9] S. Chaturantabut and D. C. Sorensen, “Nonlinear Model Reduction via Discrete Empirical Interpolation”, SIAM Journal on Scientific Computing vol. 32, 2010, pp. 2737–2764.10.1137/090766498
  10. [10] S. A. Nahvi, M. A. Bazaz, M.-U. Nabi and S. Janardhanan, “Approximate Snapshot-Ensemble Generation for Basis Extraction in Proper Orthogonal Decomposition”, IFAC Proceedings Volumes vol. 47, no. 1, 2014, pp. 917–921.10.3182/20140313-3-IN-3024.00157
  11. [11] A. Chatterjee, “An Introduction to the Proper Orthogonal Decomposition”, Current Science vol. 78, no. 7, 2000, pp. 808–817 2000.
  12. [12] Z. Bai and D. Skoogh, “A Projection Method for Model Reduction of Bilinear Dynamical Systems”, Linear Algebra and its Applications vol. 415, no. 2-3, 2006 pp. 406–425.10.1016/j.laa.2005.04.032
  13. [13] H. Zhao, X. Lan and H. Ren, “Nonlinear Power System Model Reduction based on Empirical Gramians” Journal of Electrical Engineering vol. 68, no. 6, 2017, pp. 425–434.10.1515/jee-2017-0077
  14. [14] E. Shlizerman, E. Ding, M. O. Williams and J. N. Kutz, “The Proper Orthogonal Decomposition for Dimensionality Reduction Mode-Locked Lasers and Optical Systems” International Journal of Optics, 2012.10.1155/2012/831604
  15. [15] M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, “An Empirical Interpolation Method: Application to Efficient Reduced-Basis Discretization of Partial Differential Equations”, Comptes Rendus Mathematique vol. 339, no. 9, 2004, pp. 667–672.10.1016/j.crma.2004.08.006
  16. [16] J. Bremer, P. Goyal, L. Feng, P. Benner and K. Sundmacher, “Poddeim for Efficient Reduction of a Dynamic 2d Catalytic Reactor Model”, Computers & Chemical Engineering vol. 106, 2017, pp. 777–784.10.1016/j.compchemeng.2017.02.032
  17. [17] S. Chaturantabut and D. C. Sorensen, “Discrete Empirical Interpolation for Nonlinear Model Reduction”, In Proceedings of the 48th IEEE Conference on Decision and Control, Held Jointly with the 2009 28th Chinese Control Conference, pp. 4316–4321.10.1109/CDC.2009.5400045
  18. [18] F. Ghavamian, P. Tiso and A. Simone, “Pod-Deim Model Order Reduction for Strain-Softening Viscoelasticity”, Computer Methods in Applied Mechanics and Engineering vol. 317, 2017, pp. 458–479.10.1016/j.cma.2016.11.025
  19. [19] L. Chen, X. Yang and R. Mohler, “Stability Analysis of Bilinear Systems, /sl IEEE Transactions on Automatic Control(vol. 36, no. 11, 1991, pp. 1310–1315.10.1109/9.100945
  20. [20] B. Bond. L. Daniel, “Parameterized model Order Reduction of Nonlinear Dynamical Systems”, Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, IEEE Computer Society, 2005, pp. 487–494.
  21. [21] M. Rewienski. J. White, “A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined devices”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 22, no. 2, 2003, pp. 155–170.10.1109/TCAD.2002.806601
DOI: https://doi.org/10.2478/jee-2018-0039 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 279 - 285
Submitted on: Jul 30, 2018
|
Published on: Sep 19, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 Satyavir Singh, M Abid Bazaz, Shahkar Ahmad Nahvi, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.