Have a personal or library account? Click to login
Wind speed prediction with RBF neural network based on PCA and ICA Cover

Wind speed prediction with RBF neural network based on PCA and ICA

Open Access
|May 2018

References

  1. [1] “Global wind energy council” (GWEC) [DB/OL].
  2. [2] E. T. Renani, M. F Mohamad Elias and N. A. Rahim, “Using data-driven approach for wind power prediction: A comparative study”, Energy Conversion and Management, vol. 118, pp. 193-203.June.2016.doi: 10.1016/j.enconman.2016.03.078.10.1016/j.enconman.2016.03.078
  3. [3] A. Khosravi, R. N. N. Koury, L. Machado and J. J. G. Pabon, “Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system”, Sustainable Energy Technologies and Assessments, vol. 25, pp. 146-160, February 2018.doi: 10.1016/j.seta.2018.01.001.10.1016/j.seta.2018.01.001
  4. [4] S. X. Zhang, Z. P. Zhou, X. M. Chen, Y. Hu and L. D. Yang,”PDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine”, Journal of Theoretical Biology, vol. 426, pp. 126-133, August 2017.doi: 10.1016/j.jtbi.2017.05.030.10.1016/j.jtbi.2017.05.03028552554
  5. [5] F. Bre and J. M. Gimenez, “Prediction of wind pressure coefficients on building surfaces using artificial neural networks”, Energy and Buildings, vol. 158, pp. 1429-1441, January 2018.doi: 10.1016/j.enbuild.2017.11.045.10.1016/j.enbuild.2017.11.045
  6. [6] J. P. Jeon, C. Kim, B. D. Oh and S. J. Kim, “Prediction of persistent hemodynamic depression after carotid angioplasty and stenting artificial neural network model”, Clinical Neurology and Neurosurgery, vol. 164, pp. 127-131, December 2017.doi: 10.1016/j.clineuro.2017.12.005.10.1016/j.clineuro.2017.12.00529223792
  7. [7] P. Ramasamy, S. S. Chandel and A. K. Yadav, “Wind speed prediction the mountainous region of India using an artificial neural network model”, Applied Energy, vol. 80, pp. 338-347, August 2015.doi: 10.1016/j.renene.2015.02.034.10.1016/j.renene.2015.02.034
  8. [8] V. Prema and K. Uma Rao, “Development of statistical time series models for solar power prediction”, Renewable Energy, vol. 83, pp. 100-109, November 2015.doi: 10.1016/j.renene.2015.03.038.10.1016/j.renene.2015.03.038
  9. [9] Y. N. Zhao, L. Ye, Z. Li, X. R. Song and Y. S. Lang, “A novel bidirectional mechanism based on time series model for wind power forecasting”, Applied Energy. vol. 177, pp. 793-803, Mar.2016.doi: 10.1016/j.apenergy.2016.03.096.10.1016/j.apenergy.2016.03.096
  10. [10] Y. G. Zhang, P. H. Wang, P. L. Cheng, and S. Lei, “Wind speed prediction with wavelet time series based on Lorenz disturbance”, Advances Electrical and Computer Engineering, vol. 17, pp. 107-114, August 2017.doi: 10.1016/j.aece.2017.03.014.10.4316/AECE.2017.03014
  11. [11] R. Rajesh, “Forecasting supply chain resilience performance using grey prediction”, Electronic Commerce Research and Applications , vol. 20, pp. 42-58, sep.2016.doi: 10.1016/j.elerap.2016.09.006.10.1016/j.elerap.2016.09.006
  12. [12] A. Bezuglov and G. Comert, “Short-term freeway traffic parameter prediction: Application of grey system theory models”, Expert Systems with Application, vol. 62, pp. 284-292, November 2016.doi: 10.1016/j.eswa.2016.06.032.10.1016/j.eswa.2016.06.032
  13. [13] A. Jackson and B. Turnbull, “Identification of particle-laden flow features from wavelet decomposition”, Physica D: Nonlinear Phenomena, vol. 361, pp. 12-27, December 2016.doi: 10.1016/j.physd.2017.09.009.10.1016/j.physd.2017.09.009
  14. [14] K. Y. Zhang and R. Gencay and M. E. Yazgan, “Application of wavelet decomposition time series forecasting”, Economics Letters , vol. 158, pp. 41-46, Sep.2016.doi: 10.1016/j.enconlet.2017.06.010.10.1016/j.enconlet.2017.06.010
  15. [15] S.W. Fei and Y. He “Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine”, International Journal of Electrical Power & Energy Systems, vol. 73, pp. 625-631, December 2015, doi:10.1016/j.ijepes.2015.04.019.10.1016/j.ijepes.2015.04.019
  16. [16] V. Gupta and M. Mittal, “KNN and PCA classifier with Autoregressive modelling during different ECG signal interpretation”, Procedia Computer Science, vol. 125, pp. 18-24, December 2017.doi: 10.1016/j.procs.2017.12.005.10.1016/j.procs.2017.12.005
  17. [17] E. P. Duff, A. J. Trachtenberg, C. E. Mackay, M. A. Howard, F. Wilson, S. M. Smith and M. W. Woolrich, “Task-driven ICA feature generation for accurate and interpretable prediction using fMRI”, NeuroImage, vol. 60, pp. 189-203, Mar.2016.doi: 10.1016/j.procs.2011.12.053.10.1016/j.procs.2011.12.053
  18. [18] J. Naik, P. Satapathy and P. K. Dash, “Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression”, Applied Soft Computing, pp. ASOC-4606, Dec. 2017, doi: 10.1016/j.asoc.2017.12.010.10.1016/j.asoc.2017.12.010
  19. [19] H. Zhang, A. Palazoglu, X. Y. Zhang, W. D. Zhang, Z. M. Zhao andW. S. S.W. L., “Prediction of surface ozone exceedance days using PCA with a non-parametric control limit”, Chemometrics and Intelligent Laboratory Systems, vol. 133 pp. 42-48, April 2014.doi: 10.1016/j.chemolab.2014.02.005.10.1016/j.chemolab.2014.02.005
  20. [20] S. J. Dong and A. T. H. Luo, “Bearing degradation process prediction based on the PCA and optimized LS-SVM model”, Measurement, vol. 46 pp. 3143-3152, November 2013.doi: 10.1016/j.mearsurement.2013.02.005.10.1016/j.mearsurement.2013.02.005
  21. [21] A. Datteo, F. Luca and G. Busca, “Statistical pattern recognition approach for long-time monitoring of the G. Meazza stadium by means of AR models and PCA”, Engineering Structures, vol. 153 pp. 317-333, Dec. 2017, doi: 10.1016/j.engstruct.2017.10.022.10.1016/j.engstruct.2017.10.022
  22. [22] J. C. Pereira, J. C. R. Azevedo, H. G. Knapik and H. D. Burrows, “Unsupervised component analysis: PCA, POA, ICA data exploring-connecting the dots”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 165 pp. 69-84, August 2016.doi: 10.1016/j.saa.2016.03.48.10.1016/j.saa.2016.03.48
  23. [23] Y. G. Zhang, P. H. Wang, T. Ni, P. L. Cheng and Shuang Lei, “Wind power prediction based on LS-SVM model with error correction”, Advances Electrical and Computer Engineering, vol. 17, pp. 3-8, January 2017.doi: 10.1016/j.aece.2017.01.00.10.1016/j.aece.2017.01.00
  24. [24] N. Kwak, C. Kim and H. Kim, “Dimensionality reduction based on ICA for regression problems”, Neurocomputing, vol. 71 pp. 2596-2603, August 2016.doi: 10.1016/j.neucom.2007.11.036.10.1016/j.neucom.2007.11.036
  25. [25] R. J. Martis, U. R. Acharya and L.C. Min, “ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform”, Biomedical Signal Processing and Control, vol. 8 pp. 437-448, Sep.2013.doi: 10.1016/j.bspc.2013.01.005.10.1016/j.bspc.2013.01.005
  26. [26] Y. G. Zhang, J. Y. Yang, K. C. Wang, Z. P. Wang and Y. D. Wang, “Improved wind prediction based on the Lorenz system”, Renewable Energy, vol. 81, pp. 219-226, Mar.2015.doi: 10.1016/j.renene.2015.03.039.10.1016/j.renene.2015.03.039
DOI: https://doi.org/10.2478/jee-2018-0018 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 148 - 155
Submitted on: Feb 26, 2017
|
Published on: May 30, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 Yagang Zhang, Chenhong Zhang, Yuan Zhao, Shuang Gao, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.