Have a personal or library account? Click to login
Application of A Line Ampacity Model and Its Use in Transmission Lines Operations Cover

Application of A Line Ampacity Model and Its Use in Transmission Lines Operations

Open Access
|Aug 2014

References

  1. [1] CIGRE Joint Working Group B2.C1: Increasing Capacity of Overhead Transmission Lines: Needs and Solutions, CIGRE, 2010.
  2. [2] FERNANDEZ, E.—ALBIZU, I.—BEDIALAUNETA, M. T.— MAZON, A. J.—LEITE, P. T.: Dynamic Line Rating Systems for Wind Power Integration, Power Engineering Society Conference and Exposition in Africa (PowerAfrica), IEEE, 2012, pp. 1–7.10.1109/PowerAfrica.2012.6498618
  3. [3] KLEIN, K. M.—SPRINGER, P. L.—BLACK, W. Z.: RealTime Ampacity and Ground Clearance Software for Integration into Smart Grid Technology, Power and Energy Society General Meeting, IEEE, 2011, pp. 1–11.10.1109/PES.2011.6038884
  4. [4] SCHMALE, M.—PUFFER, R.—HEIDEMANN, M.: Dynamic Ampacity Rating of Conductor Bars in Highly Loaded Substations, CIRED 2013: 22nd International Conference and Exhibition on Electricity Distribution, 2013, pp. 1–4.10.1049/cp.2013.0951
  5. [5] FU, J.—ABDELKADER, S.—MORROW, D. J.—FOX, B.: Partial Least Squares Modelling for Dynamic Overhead Line Ratings, PowerTech, 2011 IEEE Trondheim, 2011, pp. 1–6.
  6. [6] FU, J.—MORROW, D. J.—ABDELKADER, S. M.: Modelling and Prediction Techniques for Dynamic Overhead Line Rating, Power and Energy Society General Meeting, 2012 IEEE, 2012, pp. 1–7.10.1109/PESGM.2012.6344733
  7. [7] ARNOLD, P.—KMENT, A.—PIPA, M.—JAnICEK, F.: On-site Partial Discharges Measurement of XLPE Cables, Transactions On Electrical Engineering 123, (2012), 107.
  8. [8] STEPHEN, R.—DOUGLAS, D.—MIROSEVIC, G.—ARGA-SINSKA, H.—BAKIC, K.—HOFFMAN, S.—IGLESIAS, J.— JAKL, F.—KATOH, J.—KIKUTA, T. and others: Thermal Behaviour of Overhead Conductors, Cigre, 2002.
  9. [9] IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors, IEEE Std 738-2006 (Revision of IEEE Std 738-1993), IEEE Power Engineering Society, 2007, pp. c1–59.
  10. [10] TLUSTY, J.: Monitorovaní, rízení a chránení elektrizacních soustav, Ceske vysoke ucení technické v Praze, 2011.
  11. [11] PYTLAK, P.—MUSILEK, P.—LOZOWSKI, E.,: Precipitation-Based Conductor Cooling Model for Dynamic Thermal Rating Systems, Electrical Power Energy Conference (EPEC), 2009 IEEE, 2009, pp. 1–7.10.1109/EPEC.2009.5420710
  12. [12] CIGRE Working Group B2.12 and International Council on Large Electric Systems: Guide for Selection of Weather Parameters for Bare Overhead Conductor Ratings, CIGRE, 2006.
  13. [13] LE, T. L.—NEGNEVITSKY, M.—PIEKUTOWSKI, M.: Expert System Application for the Loading Capability Assessment of Transmission Lines, Power Systems, IEEE Transactions on 10 No. 4 (1995), 1805–1812.
  14. [14] ROGLER, R. D.: Infrarotdiagnose an Verbindungen der energetischen Elektrotechnik, Fortschrittberichte VDI, ser. 21, VDI Verlag, 1999.
  15. [15] VOSTRACKY, Z.—HALLER, R.: Impact of Radiation on the Thermal Behaviour of an Overhead Line Rope, 12th Interna-tional Scientific Conference Electric Power Engineering, VSB — Technical University of Ostrava, 2011, pp. 615–618.
  16. [16] SNAJDR, J.—VOSTRACKY, Z.—SEDLACEK, J.: Evaluation of Theoretical Results of Overhead Line Ampacity Model, Proceedings of the 7th International Scientific Symposium on Electrical Power Engineering, Technical University of Kosice, 2013, pp. 152–154.
  17. [17] GOGA, V.—PAULECH, J.—VARY, M.: Cooling of Electrical Cu Conductor with PVC Insulation - Analytical, Numerical and Fluid Flow Solution, J. Electrical Engineering 64 No. 2 (2013), 92–99.10.2478/jee-2013-0013
  18. [18] VARY, M.—GOGA, V.—PAULECH, J.: Experimental, Analytical and Computational Approaches to Bare Electric Wire Loading Characteristics, Electrotechnica, Electronica, Automatica 60 No. 3 (2012), 14–21.
  19. [19] VDI: VDI Heat Atlas, Springer, 2010.
  20. [20] Nktcables: VALCAP Grid Monitoring and Rating for High Voltage Cables and Overhead Lines, www.nktcables.com.
  21. [21] RIBE: RITHERM — Temperature Monitoring and Load Optimization on Overhead Transmission Lines, 2014.01.06, www.ribe.de.
  22. [22] CNI,: Overhead Electrical Lines Exceeding AC 45 kV, Part 3: Set of National Normative Aspects, Section 19: National Normative Aspects for the Czech Republic, CSN EN 50341 3 19, Cesky normalizacní institut, 2003.11.25.
  23. [23] MUSAVI, M.—CHAMBERLAIN, D.—LI, Q.: Overhead Conductor Dynamic Thermal Rating Measurement and Prediction, Smart Measurements for Future Grids (SMFG), 2011 IEEE International Conference on, 2011, pp. 135–138.10.1109/SMFG.2011.6125755
  24. [24] KIM, S. D.—MORCOS, M. M.: An Application of Dynamic Thermal Line Rating Control System to Up-Rate the Ampacity of Overhead Transmission Lines, Power Delivery, IEEE Transactions on 28 No. 2 (2013), 1231–1232.
  25. [25] ZHANG, J.—PU, J.—McCALLEY, J. D.—STERN, H.—GAL-LUS, W. A., Jr.: A Bayesian Approach for Short-Term Transmission Line Thermal Overload Risk Assessment, Power Delivery, IEEE Transactions on 17 No. 3 (2002), 770–778.
  26. [26] WANG, K.—SHENG, G.—JIANG, X.: Risk Assessment of Transmission Dynamic Line Rating based on Monte Carlo, IEEE Power Engineering and Automation Conference (PEAM), vol. 2, 2011, pp. 398–402.
DOI: https://doi.org/10.2478/jee-2014-0034 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 221 - 227
Submitted on: Jan 8, 2014
Published on: Aug 21, 2014
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2014 Jaroslav Šnajdr, Jan Sedláček, Zdenek Vostracký, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.