Have a personal or library account? Click to login
The Users’ Behavioral Intention to use Mobile Health-Tech Application to Prevent the Spreading of Coronavirus Cover

The Users’ Behavioral Intention to use Mobile Health-Tech Application to Prevent the Spreading of Coronavirus

By: Ammar Almasri  
Open Access
|Dec 2022

References

  1. Agag, G., ---amp--- El-Masry, A. A. 2016. Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: An integration of innovation diffusion theory and TAM with trust. Computers in Human Behavior 60 (3): 97-111.10.1016/j.chb.2016.02.038
  2. Ajzen, I. 1991. The theory of planned behavior. Organizational behavior and human decision processes 50 (2): 179-211.10.1016/0749-5978(91)90020-T
  3. Ajzen, I. 2002. Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior 1. Journal of applied social psychology 32 (4): 665-683.10.1111/j.1559-1816.2002.tb00236.x
  4. AlBar, A. M., ---amp--- Hoque, M. R. 2019. Patient acceptance of e-health services in Saudi Arabia: An integrative perspective. Telemedicine and e-Health 25 (9): 847-852.10.1089/tmj.2018.0107
  5. Alkhawaldeh, R.S., Alawida, M., Alshdaifat, N.F.F. et al. 2022. Ensemble deep transfer learning model for Arabic (Indian) handwritten digit recognition. Neural Comput ---amp--- Applic 34 (1):705-719.10.1007/s00521-021-06423-7
  6. Almasri, A., Alkhawaldeh, R.S. ---amp--- Çelebi, E. 2020. Clustering-Based EMT Model for Predicting Student Performance. Arab J Sci Eng 45 (1): 10067–10078.10.1007/s13369-020-04578-4
  7. Ammar Almasri, Erbug Celebi, Rami S. Alkhawaldeh 2019. EMT: Ensemble Meta-Based Tree Model for Predicting Student Performance. Scientific Programming 2019)1):1-13.10.1155/2019/3610248
  8. Almasri, A. K. M. 2014. The influence on mobile learning based on technology acceptance model (Tam), mobile readiness (Mr) and perceived interaction (Pi) for higher education students. International Journal of Technical Research and Applications 2 (1): 05-11.
  9. Almasri, A. K. M. 2015a. A hybrid proposed framework based on Quality Factors (QF) and Technology Acceptance Model (TAM) for mobile learning process: Higher education students in Jordanian universities. International Journal of Information, Business and Management 7 (3): 200-212.
  10. Almasri, A. K. M. 2015b. Readiness and mobile learning process for higher education students in Jordanian universities. ZENITH International Journal of Multidisciplinary Research 5 (1): 85-96.
  11. Ammenwerth, E. 2019. Technology Acceptance Models in Health Informatics: TAM and UTAUT. Studies in health technology and informatics 263 (1): 64-71.
  12. Anderson, J. C., ---amp--- Gerbing, D. W. 1988. Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin 103 (3): 411-423.10.1037/0033-2909.103.3.411
  13. Babic-Hodovic, V., Arslanagic-Kalajdzic, M., ---amp--- Imsirpasic, A. 2017. Perceived quality and corporate image in mobile services: the role of technical and functional quality. The South East European Journal of Economics and Business 12 (1): 114-125.10.1515/jeb-2017-0011
  14. Bae, Y. S., Kim, K. H., Choi, S. W., Ko, T., Jeong, C. W., Cho, B., et al. 2020. Information Technology–Based Management of Clinically Healthy COVID-19 Patients: Lessons From a Living and Treatment Support Center Operated by Seoul National University Hospital. Journal of Medical Internet Research 22 (6): 1-49.10.2196/19938
  15. Bassi, A., Arfin, S., John, O., ---amp--- Jha, V. 2020. An overview of mobile applications (apps) to support the coronavirus disease-2019 response in India. Indian J Med Res 151 (5): 468-473.10.4103/ijmr.IJMR_1200_20
  16. Chen, X., Tao, D., ---amp--- Zhou, Z. 2019. Factors affecting reposting behaviour using a mobile phone-based user-generated-content online community application among Chinese young adults. Behaviour ---amp--- Information Technology 38 (2): 120-131.10.1080/0144929X.2018.1515985
  17. Cheon, J., Lee, S., Crooks, S. M., ---amp--- Song, J. 2012. An investigation of mobile learning readiness in higher education based on the theory of planned behavior. Computers ---amp--- education 59 (3): 1054-1064.10.1016/j.compedu.2012.04.015
  18. Chi, T. 2018. Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. Journal of Retailing and Consumer Services 44 (1): 274-284.10.1016/j.jretconser.2018.07.019
  19. Davis, F. D. 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly 13 (3): 319-340.10.2307/249008
  20. Ekong, I., Chukwu, E., ---amp--- Chukwu, M. 2020. COVID-19 mobile positioning data contact tracing and patient privacy regulations: Exploratory search of global response strategies and the use of digital tools in Nigeria. JMIR mHealth and uHealth 8 (4): 1-21.10.2196/19139
  21. Erfannia, L., Barman, M. P., Hussain, S., Barati, R., ---amp--- Arji, G. 2020. How mobile health affects primary healthcare? Questionnaire design and attitude assessment. Digital Health 6 (1): 1-13.10.1177/2055207620942357
  22. Fornell, C., ---amp--- Larcker, D. F. 1981. Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research 18 (1): 39-50.10.1177/002224378101800104
  23. Gefen, D., Karahanna, E., ---amp--- Straub, D. W. 2003. Trust and TAM in online shopping: An integrated model. MIS quarterly 27 (1): 51-90.10.2307/30036519
  24. Guo, R., Berkshire, S. D., Fulton, L. V., ---amp--- Hermanson, P. M. 2019. Predicting intention to use evidence-based management among US healthcare administrators: Application of the theory of planned behavior and structural equation modeling. International Journal of Healthcare Management 12 (1): 25-32.10.1080/20479700.2017.1336856
  25. Hair Jr, J. F., Hult, G. T. M., Ringle, C., ---amp--- Sarstedt, M. 2016. A primer on partial least squares structural equation modeling (PLS-SEM): Sage publications.
  26. Hew, J.-J., Lee, V.-H., Ooi, K.-B., ---amp--- Lin, B. 2016. Mobile social commerce: The booster for brand loyalty?. Computers in Human Behavior 59:142-154.10.1016/j.chb.2016.01.027
  27. Ghose, A., Guo, X., Li, B., ---amp--- Dang, Y. 2021. Empowering patients using smart mobile health platforms: Evidence from a randomized field experiment. Forthcoming at MIS Quarterly 46:151-192.10.25300/MISQ/2022/16201
  28. Ketikidis, P., Dimitrovski, T., Lazuras, L., ---amp--- Bath, P. A. 2012. Acceptance of health information technology in health professionals: an application of the revised technology acceptance model. Health informatics journal 18 (2): 124-134.10.1177/1460458211435425
  29. Kodali, P. B., Hense, S., Kopparty, S., Kalapala, G. R., ---amp--- Haloi, B. 2020. How Indians responded to the Arogya Setu app?. Indian journal of public health, 64 (6): 228-230.10.4103/ijph.IJPH_499_20
  30. Ku, WT., Hsieh, PJ. 2018. Understanding the Acceptance of Health Management Mobile Services: Integrating Theory of Planned Behavior and Health Belief Model. Communications in Computer and Information Science 850:247-252.10.1007/978-3-319-92270-6_34
  31. Lowry, P. B., ---amp--- Gaskin, J. 2014. Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE transactions on professional communication 57 (2): 123-146.10.1109/TPC.2014.2312452
  32. Lu, Y., Cao, Y., Wang, B., ---amp--- Yang, S. 2011. A study on factors that affect users’ behavioral intention to transfer usage from the offline to the online channel. Computers in Human Behavior 27 (1): 355-364.10.1016/j.chb.2010.08.013
  33. McKnight, D. H., ---amp--- Kacmar, C. J. 2007. Factors and effects of information credibility. Proceedings of the ninth international conference on electronic commerce 2007: 423-432.10.1145/1282100.1282180
  34. MoH. 2020. Aman. from https://corona.moh.gov.jo/en (Accessed January 3, 2020).
  35. Moon, J.-W., ---amp--- Kim, Y.-G. 2001. Extending the TAM for a World-Wide-Web context. Information ---amp--- Management 38 (4): 217-230.10.1016/S0378-7206(00)00061-6
  36. Munoz-Leiva, F., Climent-Climent, S., ---amp--- Liébana-Cabanillas, F. 2017. Determinants of intention to use the mobile banking apps: An extension of the classic TAM model. Spanish Journal of Marketing-ESIC, 21 (1): 25-38.10.1016/j.sjme.2016.12.001
  37. Pan, X. B. 2020. Application of personal-oriented digital technology in preventing transmission of COVID-19, China. Irish Journal of Medical Science 189 (4):1145-1146.10.1007/s11845-020-02215-5
  38. Parasuraman, A., ---amp--- Colby, C. L. 2015. An updated and streamlined technology readiness index: TRI 2.0. Journal of service research 18 (1): 59-74.10.1177/1094670514539730
  39. Pilav-Velić, A., Černe, M., Trkman, P., Wong, S. I., ---amp--- Kadić-Abaz, A. 2021. Digital or Innovative: understanding “Digital Literacy–Practice–Innovative Work Behavior” Chain. The South East European Journal of Economics and Business 16 (1): 107-119.10.2478/jeb-2021-0009
  40. Pulia, M. S., Heckmann, D. J., Glazer, J. M., Barclay-Buchanan, C., Kuehnel, N., Ross, J., et al. 2020. Electronic Health Record-Based Surveillance for Community Transmitted COVID-19 in the Emergency Department. Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health 21 (4): 748-751.10.5811/westjem.2020.5.47606
  41. Ren, X., Zhai, Y., Song, X., Wang, Z., Dou, D., ---amp--- Li, Y. 2020. The Application of Mobile Telehealth System to Facilitate Patient Information Presentation and Case Discussion. Telemedicine and e-Health 26 (6): 725-733.10.1089/tmj.2020.0084
  42. Shen, X.-L., Cheung, C. M. K., ---amp--- Lee, M. K. O. 2013. What leads students to adopt information from W ikipedia? An empirical investigation into the role of trust and information usefulness. British Journal of Educational Technology 44 (3): 502-517.10.1111/j.1467-8535.2012.01335.x
  43. Sun, Y., Wang, N., Guo, X., ---amp--- Peng, Z. 2013. Understanding the acceptance of mobile health services: a comparison and integration of alternative models. Journal of electronic commerce research 14 (2): 183-200.
  44. Timmers, T., Janssen, L., Stohr, J., Murk, J. L., ---amp--- Berrevoets, M. 2020. Using mHealth to support COVID-19 education, self-assessment, and symptom monitoring: An observational study in The Netherlands. JMIR Mhealth Uhealth 8 (6): 1-29.10.2196/19822
  45. Umezuruike, C., Nwankwo, W., Tibenderana, P., Assimwe, J. P., ---amp--- Ronald, M. 2020. Corona virus disease (COVID 19): Analysis and design of an alert and real-time tracking system. International Journal of Emerging Trends in Engineering Research 8 (5): 1854-1859.10.30534/ijeter/2020/41852020
  46. Vokinger, K. N., Nittas, V., Witt, C. M., Fabrikant, S. I., ---amp--- von Wyl, V. 2020. Digital health and the COVID-19 epidemic: an assessment framework for apps from an epidemiological and legal perspective. Swiss medical weekly 150:1-9.10.4414/smw.2020.20282
  47. Walczuch, R., Lemmink, J., ---amp--- Streukens, S. 2007. The effect of service employees’ technology readiness on technology acceptance. Information ---amp--- Management 44 (2): 206-215.10.1016/j.im.2006.12.005
  48. Wang, S., Ding, S., ---amp--- Xiong, L. 2020. A New System for Surveillance and Digital Contact Tracing for COVID-19: Spatiotemporal Reporting Over Network and GPS. JMIR mHealth and uHealth, 8 (6): 1-6.10.2196/19457
  49. Wathen, C. N., ---amp--- Burkell, J. 2002. Believe it or not: Factors influencing credibility on the Web. Journal of the American society for information science and technology 53 (2): 134-144.10.1002/asi.10016
  50. World Health Organization. 2020. Considerations for quarantine of individuals in the context of containment for coronavirus disease (COVID19). URL: https://tinyurl.com/y8smo4pe (accessed April 3, 2020).
  51. World Health Organization Writing Group, Bell D, Nicoll A, Fukuda K, Horby P, Monto A, et al. 2006. Nonpharmaceutical interventions for pandemic influenza, national and community measures. Emerg Infect Dis 12 (1): 88-94.10.3201/eid1201.051371
  52. Wu, J.-H., Wang, S.-C., ---amp--- Lin, L.-M. 2007. Mobile computing acceptance factors in the healthcare industry: A structural equation model. International journal of medical informatics 76 (1): 66-77.10.1016/j.ijmedinf.2006.06.006
  53. Wu, P., Zhang, R., Zhu, X., ---amp--- Liu, M. 2022. Factors Influencing Continued Usage Behavior on Mobile Health Applications. Healthcare 10 (2): 1-18.10.3390/healthcare10020208
  54. Wynne, C. W. 1998. Issues and opinion on structural equation modelling. Management Information Systems quarterly 22 (1): 1-8.
  55. Xia, M., Zhang, Y., ---amp--- Zhang, C. 2018. A TAM-based approach to explore the effect of online experience on destination image: A smartphone user’s perspective. Journal of Destination Marketing ---amp--- Management 8:259-270.10.1016/j.jdmm.2017.05.002
  56. Ye, Q., Zhou, J., ---amp--- Wu, H. 2020. Using Information Technology to Manage the COVID-19 Pandemic: Development of a Technical Framework Based on Practical Experience in China. JMIR Med Inform 8 (6): 1-23.10.2196/19515
  57. Zamberg, I., Manzano, S., Posfay-Barbe, K., Windisch, O., Agoritsas, T., ---amp--- Schiffer, E. 2020. A Mobile Health Platform to Disseminate Validated Institutional Measurements During the COVID-19 Outbreak: Utilization-Focused Evaluation Study. JMIR Public Health Surveill 6 (2): 1-24.10.2196/18668
  58. Zhang, X., Geng, G., ---amp--- Sun, P. 2017. Determinants and implications of citizens’ environmental complaint in China: Integrating theory of planned behavior and norm activation model. Journal of Cleaner Production 166:148-156.10.1016/j.jclepro.2017.08.020
Language: English
Page range: 18 - 33
Published on: Dec 23, 2022
Published by: University of Sarajevo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Ammar Almasri, published by University of Sarajevo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.