Have a personal or library account? Click to login

Evaluation of Mixed Frequency Approaches for Tracking Near-Term Economic Developments in North Macedonia

Open Access
|Dec 2021

References

  1. Aastveit, K.A., Foroni, C. and Ravazzolo, F. 2016. Density forecasts with MIDAS models.Journal of Applied Econometrics, 32(4): 783–801.10.1002/jae.2545
  2. Abdić, A., Resić, E., Abdić, A., and Rovčanin, A. 2020. Nowcasting GDP of Bosnia and Herzegovina: a comparison of forecast accuracy models. South East European Journal of Economics and Business,15 (2): 1-14.10.2478/jeb-2020-0011
  3. Andreou, E., Ghysels, E. and Kourtellos, A. 2013. Should Macroeconomic Forecasters Use Daily Financial Data and How?.Journal of Business & Economic Statistics, 31(2):240-251.10.1080/07350015.2013.767199
  4. Andreou, E., Gagliardini, P., Ghysels, E. and Rubin, M. 2019. Inference in Group Factor Models With an Application to Mixed-FrequencyData.Econometrica, 10.3982/ECTA14690, 87(4):1267-1305.10.3982/ECTA14690
  5. Bai, J., Ghysels, E. and Wright, J.H. 2013. State Space Models and MIDAS Regressions.Econometric Reviews, 32(7):779-813.10.1080/07474938.2012.690675
  6. Bańbura, M., Giannone, D., Modugno, M. and Reichlin, L. 2013. Now-casting and the real-time data flow, Working Paper SeriesNo. 1564, European Central Bank.10.2139/ssrn.2284274
  7. Barsoum, F., and Stankiewicz, S. 2013. Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes. Working Paper Series of the Department of Economics 2013-10, University of Konstanz.
  8. Chiu, C.W., Eraker, B., Foerster, A.T., Kim, T.B. and Seoane, H.D. 2011. Estimating VAR’s Sampled at Mixed or Irregular Spaced Frequencies: A bayesian approach, Research Working Paper RW 11-11, Federal Reserve Bank of Kansas City.
  9. Clements, M. and Galvão, A. 2008. Macroeconomic forecasting with mixed frequency data: forecasting output growth in the United States. Journal of Business and Economic Statistics, 26:546–554.10.1198/073500108000000015
  10. Clements, M. and Galvão, A. 2009. Forecasting US Output Growth Using Leading Indicators: An Appraisal Using MIDAS Models. Journal of Applied Econometrics,24(7): 1187–1206.10.1002/jae.1075
  11. Diebold, F. X. and Mariano,R. S. 1995. Comparing predictive accuracy.Journal of Business & Economic Statistics, 13:253–263.10.1080/07350015.1995.10524599
  12. Drechsel, K. and Scheufele, R. 2012. Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment, Working Papers, No 2012-16, Swiss National Bank.
  13. Duarte, C. 2014. Autoregressive augmentation of MIDAS regressions. Working Papers w201401, Banco de Portugal, Economics and Research Department.
  14. Ferrara, L., Marsilli, C. and Ortega, J-P. 2014. Forecasting Growth During the Great Recession: Is Financial Volatility the Missing Ingredient?.Economic Modelling, 36: 44-50,Working Paper No. 454, Banque de France.10.1016/j.econmod.2013.08.042
  15. Foroni, C. and Marcellino, M. 2013. A survey of econometric methods for mixed-frequency data. Department of Economics 2013/02. European University Institute.10.2139/ssrn.2268912
  16. Foroni, C. and Marcellino, M. 2014. A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates.International Journal of Forecasting, 30(3):554-568.10.1016/j.ijforecast.2013.01.010
  17. Foroni, C., Marcellino, M. and Schumacher, C. 2011. U-MIDAS: MIDAS regressions with unrestricted lag polynomials. Discussion Paper Series 1: Economic Studies 35, Deutsche Bundesbank, Research Centre.10.2139/ssrn.2785452
  18. Foroni, C., Marcellino, M. and Stevanovic, D. 2018. Mixed Frequency Models with MA Components. Deutsche Bundesbank Discussion Paper No. 02/2018.10.2139/ssrn.3289564
  19. Ghysels, E., Santa-Clara, P. and Valkanov, R. 2004. The MIDAS Touch: Mixed Data Sampling Regression Models. CIRANO Working Papers 2004s-20, CIRANO.
  20. Ghysels, E., Santa-Clara, P. and Valkanov, R. 2005. There is a risk-return trade-off after all. Journal of Financial Economics, 76:509–548. doi:10.1016/j.jfineco.2004.03.00810.1016/j.jfineco.2004.03.008
  21. Ghysels, E., Santa-Clara, P. and Valkanov, R. 2006. Predicting volatility: getting the most out of return data sampled at different frequencies. Journal of Econometrics, 131:59–95.10.1016/j.jeconom.2005.01.004
  22. Kapetanios, G., Marcellino, M. and Petrova, K. 2018. Analysis of the most recent modelling techniques for big data with particular attention to Bayesian ones. Eurostat Statistical Working Papers, 2018 edition.
  23. Kuzin, V., Marcellino, M. and Schumacher, C. 2011. MIDAS vs. Mixed frequency VAR: Nowcasting GDP in the euro-area. International Journal of Forecasting, 27(2):529–542.10.1016/j.ijforecast.2010.02.006
  24. Leboeuf, M. and Morel, L. 2014. Forecasting Short-Term Real GDP Growth in the Euro Area and Japan Using Unrestricted MIDAS Regressions. Discussion Papers, Bank of Canada.
  25. Marsilli, C. 2014. Mixed-Frequency Modeling and Economic Forecasting. Economics and Finance. Université de Franche-Comté, 2014. English. NNT: 2014BESA2023. tel-01645421.
  26. Mikosch, H. and Neuwirth, S. 2015. Real-time forecasting with a MIDAS VAR. BOFIT Discussion Papers 13/2015, Bank of Finland, Institute for Economies in Transition.10.2139/ssrn.2588905
  27. Mittnik, S. and Zadrozny, P.A. 2004. Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data. CESifo Working Paper Series No. 1203, CESifo Group Munich.10.2139/ssrn.556075
  28. Mariano, R. and Murasawa, Y. 2010. A Coincident Index, Common Factors, and Monthly Real GDP, Oxford Bulletin of Economics and Statistics, 72(1):27-46.10.1111/j.1468-0084.2009.00567.x
  29. Schorfheide, F. and Song, D. 2015. Real-Time Forecasting With a Mixed-Frequency VAR.Journal of Business & Economic Statistics, 33(3):366–380.10.1080/07350015.2014.954707
Language: English
Page range: 43 - 52
Published on: Dec 30, 2021
Published by: University of Sarajevo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Gani Ramadani, Magdalena Petrovska, Vesna Bucevska, published by University of Sarajevo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.