Have a personal or library account? Click to login
Industry-University-Research collaboration networks: the identification and driving factors of key technologies Cover

Industry-University-Research collaboration networks: the identification and driving factors of key technologies

By: Qining Peng,  Xian Zhang and  Zhenkang Fu  
Open Access
|Dec 2025

Figures & Tables

Figure 1.

The analytical framework for IUR Key Technology Identification and Evolutionary.
The analytical framework for IUR Key Technology Identification and Evolutionary.

Figure 2.

Distribution of Patent Applications in I-U-R Cooperation Applicants.
Distribution of Patent Applications in I-U-R Cooperation Applicants.

Figure 3.

The Period of 2015-2016.
The Period of 2015-2016.

Figure 4.

The Period of 2017-2018.
The Period of 2017-2018.

Figure 5.

The Period of 2019-2020.
The Period of 2019-2020.

Figure 6.

The Period of 2021-2022.
The Period of 2021-2022.

Figure 7.

The Period of 2023-2024.
The Period of 2023-2024.

Figure 8.

Research Hypotheses.
Research Hypotheses.

Figure 9.

Fitting Results for 2015-2024.
Fitting Results for 2015-2024.

The parameters of the ERGM for 2017-2018_

VariableFeatureEstimated coefficientSignificance test valueP-value
Control variablesedges-66.90-6.561< 0.001*** (10.19)
Applicant Degree0.896.55< 0.001*** (0.13)
Key technology Degree0.120.230.81725 (0.56)
Applicant BC-0.35-3.010.0026** (0.11)
Key technology BC0.0040.180.8527 (0.02)
Applicant CC21.743.420.0006*** (6.35)
Key technology CC116.174.12< 0.001*** (28.17)
Independent variablesApplicant KD-0.46-5.63< 0.001*** (0.08)
Applicant KW0.0020.020.9815 (0.12)
Applicant KC0.0010.001< 0.001*** (0.001)

The parameters of the ERGM for 2019-2020_

VariableFeatureEstimated coefficientSignificance test valueP-value
Control variablesedges-75.72-6.43< 0.001*** (11.76)
Applicant Degree0.926.28< 0.001*** (0.14)
Key technology Degree-0.52-0.650.5111 (0.80)
Applicant BC-0.47-3.770.0001*** (0.12)
Key technology BC0.0020.130.8909 (0.02)
Applicant CC27.774.56< 0.001*** (6.08)
Key technology CC134.404.01< 0.001*** (33.49)
Independent variablesApplicant KD-0.40-5.03< 0.001*** (0.08)
Applicant KW0.743.730.0001*** (0.19)
Applicant KC0.0010.001< 0.001*** (0.001)

The concept and formula of characteristic variables_

VariableFeatureEquationConcept
DegreeDegreei=jAijDegre{e_i} = \sum\nolimits_j {{A_{ij}}} The number of other nodes directly connected to a node, where Aij is an indicator variable representing whether there is an edge between node i and node j (if there is an edge, Aij=1; otherwise, Aij=0).
Control variablesBetweenness CentralityBCi=sitσst(i)σstB{C_i} = \sum\nolimits_{s \ne i \ne t} {{{{{\rm{\sigma }}_{st}}(i)} \over {{{\rm{\sigma }}_{st}}}}} The measure of a node’s ability to control information flow in the network, where σst represents the number of shortest paths from node s to node t, and σst(i)是 represents the number of those shortest paths that pass through node i.
Closeness CentralityCCc(v)=1uV{ V }d(v,u)C{C_c}(v) = {1 \over {\sum\nolimits_{u \in V\left\{ V \right\}} {d(v,u)} }}A measure used to assess the importance of a node, reflecting the degree of closeness between a particular node and all other nodes in the network.
Knowledge Depthknowledgedepthi=Σ(countNP)2knowledg{e_{dept{h_i}}} = \Sigma {\left( {{{count} \over {NP}}} \right)^2}The extent, complexity, and systematic nature of an individual’s or organization’s knowledge in a specific field. It reflects the professional level and mastery of a person or organization in a particular domain.
Independent variablesKnowledge Widthknowledgewidh =1Σ( count NPi)2knowledg{e_{widh }} = 1 - \Sigma {\left( {{{{\rm{ }}count{\rm{ }}} \over {N{P_i}}}} \right)^2}A measure used to describe the scope and diversity of the knowledge possessed by an organization or system across different fields or subjects.
Knowledge CombinationClustering Coefficient1=12*tripletsk*(k1)Clustering Coefficien{t^{ - 1}} = {1 \over {{{{2^*}triplets} \over {{k^*}(k - 1)}}}}The behavior of individuals or organizations in the innovation process of establishing and altering the connections between knowledge units to form new combinations or change existing ones.

Applicant Nodes Feature Statistics_

TimesKey Technology nodesApplicantsPatents
2015-201687449,308
2017-2018945413,630
2019-2020945016,033
2021-20221005530,394
2023-20241005846,718

The parameters of the ERGM for 2015-2016_

VariableFeatureEstimated coefficientSignificance test valueP-value
Control variablesedges-46.21-5.27< 0.001*** (8.76)
Applicant Degree0.825.02< 0.001*** (0.16)
Key technology Degree0.440.800.42 (0.55)
Applicant BC-0.36-2.810.004** (0.12)
Key technology BC0.0080.320.742 (0.02)
Applicant CC23.403.430.0005*** (6.80)
Key technology CC64.592.770.005** (23.24)
Independent variablesApplicant KD-0.29-4.45< 0.001*** (0.06)
Applicant KW-0.43-3.010.002** (0.14)
Applicant KC0.0010.001< 0.001*** (0.001)

The parameters of the ERGM for 2023-2024_

VariableFeatureEstimated coefficientSignificance test valueP-value
Control variablesedges-141.60-4.85< 0.001 *** (29.18)
Applicant Degree2.1517.39< 0.001 *** (0.29)
Key technology Degree-1.807-0.840.4008 (2.15)
Applicant BC-1.747-6.63< 0.001 *** (0.26)
Key technology BC-0.005-0.210.829 (0.02)
Applicant CC-0.57-4.94< 0.001 *** (0.11)
Key technology CC-0.15-0.860.3872 (0.17)
Independent variablesApplicant KD0.0010.001< 0.001 *** (0.001)
Applicant KW68.587.87< 0.001 *** (8.70)
Applicant KC258.302.870.0040** (89.77)

Key Technology Information Entropy Weights_

The Period of 2015-2016The Period of 2017-2018The Period of 2019-2020
NodeEntropyNodeEntropyNodeEntropy
G06F7.5617G01N8.0909G06F8.5610
G01N7.5268G06F7.9372G01N8.1527
G06Q6.9745G06Q7.5348G06Q7.7500
H02J6.6634H02J6.9692G06T7.4453
G01R6.6497G01R6.8984G06K7.1600
H04L6.3043G06T6.8715G01R7.0795
C12N6.2971G06K6.8715G06V6.9556
G05B6.0722H04L6.6329H02J6.9385
B01J6.0540G05B6.4766H04L6.8685
G06K6.0449C12N6.4582A61K6.5681
The Period of 2021-2022The Period of 2023-2024
NodeEntropyNodeEntropy
G06F9.4506G06F10.5335
G01N9.0077G01N9.8302
G06Q8.4512G06Q9.4255
G06T8.4129G06V9.3989
G06V8.1743G06T9.1705
G01R7.4942H02J8.5559
G06K7.4035G01R8.3108
H02J7.3699H04L8.2822
H04L7.3504B01J8.1335
C04B7.2029C04B8.1181

The parameters of the ERGM for 2021-2022_

VariableFeatureEstimated coefficientSignificance test valueP-value
Control variablesedges-114.40-5.17< 0.001*** (22.12)
Applicant Degree1.346.94< 0.001*** (-0.96)
Key technology Degree-1.92-1.1450.2523 (0.18)
Applicant BC-0.96-5.30< 0.001*** ()
Key technology BC0.00310.200.8384 (0.01)
Applicant CC-0.50-5.01< 0.001*** (0.10)
Key technology CC-0.77-3.810.0001*** (0.20)
Independent variablesApplicant KD0.0010.001< 0.001*** (0.001)
Applicant KW44.126.37< 0.001*** (6.91)
Applicant KC224.503.280.001*** (68.36)
DOI: https://doi.org/10.2478/jdis-2025-0058 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Submitted on: Jul 22, 2025
Accepted on: Nov 12, 2025
Published on: Dec 5, 2025
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Qining Peng, Xian Zhang, Zhenkang Fu, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT