References
- Adade, S. Y.-S. S., Lin, H., Johnson, N. A. N., Nunekpeku, X., Aheto, J. H., Ekumah, J.-N., Kwadzokpui, B. A., Teye, E., Ahmad, W., & Chen, Q. (2024). Advanced food contaminant detection through multi-source data fusion: Strategies, applications, and future perspectives. Trends in Food Science & Technology, 104851.
- Aledo, J. A., Gámez, J. A., & Molina, D. (2016). Using extension sets to aggregate partial rankings in a flexible setting. Applied Mathematics and Computation, 290, 208–223. https://doi.org/10.1016/j.amc.2016.06.005
- Ali, A., & Meilă, M. (2012). Experiments with kemeny ranking: What works when? Mathematical Social Sciences, 64(1), 28–40.
- Ali, I., Cook, W. D., & Kress, M. (1986). On the minimum violations ranking of a tournament. Management Science, 32(6), 660–672.
- Almog, A., & Shmueli, E. (2019). Structural Entropy: Monitoring Correlation-Based Networks Over Time With Application To Financial Markets. Scientific Reports, 9(1), 10832. https://doi.org/10.1038/s41598-019- 47210-8
- Argentini, A., & Blanzieri, E. (2012). Ranking Aggregation Based on Belief Function. In S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, & R. R. Yager (Eds.), Advances in Computational Intelligence (Vol. 299, pp. 511–520). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31718-7_53
- Caplin, A., & Nalebuff, B. (1991). Aggregation and Social Choice: A Mean Voter Theorem. Econometrica, 59(1), 1. https://doi.org/10.2307/2938238
- Chartier, T. P., Kreutzer, E., Langville, A. N., Pedings, K., & Yamamoto, Y. (2010). Minimum violations sports ranking using evolutionary optimization and binary integer linear program approaches. In A. Bedford & M. Ovens (Eds.), Proceedings of the Tenth Australian Conference on Mathematics and Computers in Sport (pp. 13–20).
- Chen, K., Bui, T., Chen, F., Wang, Z., & Nevatia, R. (2017). AMC: Attention guided Multi-modal Correlation Learning for Image Search (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1704.00763
- Chen, X., Li, W., Lu, S., Zhou, Z., & Fu, X. (2018). Efficient resource allocation for on-demand mobile-edge cloud computing. IEEE Transactions on Vehicular Technology, 67(9), 8769–8780.
- de Borda, J. (1781). M’emoire sur les’ elections au scrutin. Histoire de l’Acad’emie Royale Des Sciences, 102, 657-665.
- de Caritat Mis, J. A. N. (1785). Essai sur I’application de I’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie royale.
- Dehmer, M., & Mowshowitz, A. (2011). A history of graph entropy measures. Information Sciences, 181(1), 57-78. https://doi.org/10.1016/j.ins.2010.08.041
- Deng, K., Han, S., Li, K. J., & Liu, J. S. (2014). Bayesian aggregation of order-based rank data. Journal of the American Statistical Association, 109(507), 1023–1039.
- Dourado, I. C., Pedronette, D. C. G., & Torres, R. da S. (2019). Unsupervised graph-based rank aggregation for improved retrieval. Information Processing & Management, 56(4), 1260–1279. https://doi.org/10.1016/j. ipm.2019.03.008
- Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the Web. In Proceedings of the 10th International Conference on World Wide Web (pp.613–622). Association for Computing Machinery. https://doi.org/10.1145/371920.372165
- Faghri, A., & Bergman, T. L. (2024). Ranking academic institutions based on the productivity, impact, and quality of institutional scholars. Journal of Data and Information Science, 9(3), 116–154. https://doi.org/10.2478/jdis-2024-0017
- Frank Hsu, D., & Taksa, I. (2005). Comparing rank and score combination methods for data fusion in information retrieval. Information Retrieval, 8(3), 449–480.
- Guo, X., Chen, Y., Du, J., & Dong, E. (2022). Extracting and Measuring Uncertain Biomedical Knowledge from Scientific Statements. Journal of Data and Information Science, 7(2), 6–30. https://doi.org/10.2478/jdis-2022-0008
- Hartley, R. V. (1928). Transmission of information 1. Bell System Technical Journal, 7(3), 535–563.
- Hong, Y., Zhang, M., & Meeker, W. Q. (2018). Big data and reliability applications: The complexity dimension. Journal of Quality Technology, 50(2), 135–149.
- Kayed, A., El-Qawasmeh, E., & Qawaqneh, Z. (2010). Ranking web sites using domain ontology concepts. Information & Management, 47(7–8), 350–355.
- Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1–2), 81–93.
- Kendall, M. G. (1945). The treatment of ties in ranking problems. Biometrika, 33(3), 239–251.
- Keyhanipour, A. H. (2025). Graph-induced rank-aggregation using information fusion operators. The Journal of Supercomputing, 81(1), 43. https://doi.org/10.1007/s11227-024-06595-8
- Li, G., Gao, W., & Gao, W. (2024). Entropy coding. In Point Cloud Compression: Technologies and Standardization (pp. 113–133). Springer.
- Li, X., Wang, X., & Xiao, G. (2019). A comparative study of rank aggregation methods for partial and top ranked lists in genomic applications. Briefings in Bioinformatics, 20(1), 178–189. https://doi.org/10.1093/bib/bbx101
- Lillis, D. (2020). On the evaluation of data fusion for information retrieval. In Proceedings of the 12th Annual Meeting of the Forum for Information Retrieval Evaluation (pp. 54–57).
- Lin, S. (2010). Rank aggregation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 555–570.
- Liu, X., Wang, X., Lyu, L., & Wang, Y. (2022). Identifying disruptive technologies by integrating multi-source data. Scientometrics, 127(9), 5325–5351.
- Luce, R. D. (1959). Individual choice behavior (Vol. 4). Wiley New York.
- Lynch, C., Aryafar, K., & Attenberg, J. (2016). Images Don’t Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank. In Proceedings of the 22nd ACM SIGKDD International Conference on KnowledgeDiscovery andDataMining (pp. 541–548). https://doi.org/10.1145/2939672.2939728
- Maanijou, R., & Mirroshandel, S. A. (2019). Introducing an expert system for prediction of soccer player ranking using ensemble learning. Neural Computing and Applications, 31(12), 9157–9174.
- Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44(1/2), 114–130.
- Neveling, M., & Rothe, J. (2021). Control complexity in Borda elections: Solving all open cases of offline control and some cases of online control. Artificial Intelligence, 298, 103508. https://doi.org/10.1016/j. artint.2021.103508
- Omar, Y. M., & Plapper, P. (2020). A Survey of Information Entropy Metrics for Complex Networks. Entropy, 22(12), 1417. https://doi.org/10.3390/e22121417
- Ossadnik, W., Schinke, S., & Kaspar, R. H. (2016). Group aggregation techniques for analytic hierarchy process and analytic network process: A comparative analysis. Group Decision and Negotiation, 25(2), 421–457.
- Pedings, K. E., Langville, A. N., & Yamamoto, Y. (2012). A minimum violations ranking method. Optimization and Engineering, 13(2), 349–370. https://doi.org/10.1007/s11081-011-9135-5
- Plackett, R. L. (1975). The analysis of permutations. Journal of the Royal Statistical Society Series C: Applied Statistics, 24(2), 193–202.
- Pujahari, A., & Sisodia, D. S. (2020). Aggregation of preference relations to enhance the ranking quality of collaborative filtering based group recommender system. Expert Systems with Applications, 156, 113476. https://doi.org/10.1016/j.eswa.2020.113476
- Qin, T., Geng, X., & Liu, T.-Y. (2010). A new probabilistic model for rank aggregation. In Proceedings of the 24th International Conference on Neural Information Processing Systems (pp. 1948–1956). Curran Associates Inc.
- Reilly, B. (2002). Social Choice in the South Seas: Electoral Innovation and the Borda Count in the Pacific Island Countries.InternationalPoliticalScienceReview,23(4), 355–372.https://doi.org/10.1177/0192512102023004002
- Rong, C., Wen, Z. H. U., & Jiqing, S. U. N. (2019). Multi-source data fusion method and its empirical study for journal evaluation. Chinese Journal of Scientific and Technical Periodicals, 30(6), 685.
- Schalekamp, F., & Zuylen, A. van. (2009). Rank aggregation: Together we’re strong. In 2009 Proceedings of the Eleventh Workshop on Algorithm Engineering and Experiments (ALENEX) (pp. 38–51).
- Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.
- Soneson, C., & Robinson, M. D. (2018). Bias, robustness and scalability in single-cell differential expression analysis. Nature Methods, 15(4), 255–261.
- Spearman, C. (1987). The proof and measurement of association between two things. The American Journal of Psychology, 100(3/4), 441–471.
- Tadbier, A. W., & Shoufan, A. (2021). Ranking educational channels on YouTube: Aspects and issues. Education and Information Technologies, 26(3), 3077–3096. https://doi.org/10.1007/s10639-020-10414-x
- Tian, Y., Zhang, Z., Xiong, J., Chen, L., Ma, J., & Peng, C. (2022). Achieving Graph Clustering Privacy Preservation Based on Structure Entropy in Social IoT. IEEE Internet of Things Journal, 9(4), 2761–2777. https://doi. org/10.1109/JIOT.2021.3092185
- Ursu, R. M. (2015). The power of rankings: Quantifying the effects of rankings on online consumer search and choice. SSRN Electronic Journal. https://dx.doi.org/10.2139/ssrn.2729325
- Wang, J.-N., Du, J., & Chiu, Y.-L. (2020). Can online user reviews be more helpful? Evaluating and improving ranking approaches. Information & Management, 57(8), 103281.
- Wang, X., Wang, Y., Yang, J., Jia, X., Li, L., Ding, W., & Wang, F.-Y. (2024). The survey on multi-source data fusion in cyber-physical-social systems: Foundational infrastructure for industrial metaverses and industries 5.0. Information Fusion, 107, 102321.
- Wimmer, L., Sale, Y., Hofman, P., Bischl, B., & Hüllermeier, E. (2023). Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures? Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI 2023), Proceedings of Machine Learning Research, 216, 2282–2292. Retrieved from https://proceedings.mlr.press/v216/wimmer23a.html
- Xiao, Y., Deng, H.-Z., Lu, X., & Wu, J. (2021). Graph-based rank aggregation method for high-dimensional and partial rankings. Journal of the Operational Research Society, 72(1), 227–236. https://doi.org/10.1080/0160 5682.2019.1657365
- Xiao, Y., Deng, Y., Wu, J., Deng, H.-Z., & Lu, X. (2017). Comparison of rank aggregation methods based on inherent ability. Naval Research Logistics, 64(7), 556–565.
- Xu, H., Luo, R., Winnink, J., Wang, C., & Elahi, E. (2022). A methodology for identifying breakthrough topics using structural entropy. Information Processing & Management, 59(2), 102862. https://doi.org/10.1016/j.ipm.2021.102862
- Xu, H.-Y., Yue, Z.-H., Wang, C., Dong, K., Pang, H.-S., & Han, Z. (2017). Multi-source data fusion study in scientometrics. Scientometrics, 111(2), 773–792.
- Zhao, Y., Shi, Z., Zhang, J., Chen, D., & Gu, L. (2019). A novel active learning framework for classification: Using weighted rank aggregation to achieve multiple query criteria. Pattern Recognition, 93, 581–602.