Have a personal or library account? Click to login
Peer review for funding decisions Cover
By: Yuxian Liu,  Sisi Li and  Ronald Rousseau  
Open Access
|Oct 2025

References

  1. Ayoubi, C., Pezzoni, M., & Visentin, F. (2021). Does it pay to do novel science? The selectivity patterns in science funding. Science and Public Policy, 48(5), 635-648.
  2. Azoulay, P., Zivin, J. S. G., & Manso, G. (2011). Incentives and creativity: evidence from the academic life sciences. RAND Journal of Economics, 42(3), 527-554.
  3. Baccini, A., & Re, C. (2025). Is the panel fair? Evaluating panel compositions through network analysis. The case of research assessments in Italy. Scientometrics, 130(3), 2093-2135. https://doi.org/10.1007/s11192-025-05255-9
  4. Barlösius, E., Paruschke, L., & Philipps, A. (2023). Peer review’s irremediable flaws: Scientists’ perspectives on grant evaluation in Germany. Research Evaluation, 32(4), 623-634.
  5. Bedessem, B. (2020). Should we fund research randomly? An epistemological criticism of the lottery model as an alternative to peer review for the funding of science. Research Evaluation, 29(2), 150-157.
  6. Bendiscioli, S. (2019). The troubles with peer review for allocating research funding. EMBO Reports, 20: e49472.
  7. Bendiscioli, S., Firpo, T., Bravo-Biosca, A., Czibor, E., Garfinkel, M., Stafford, T., Wilsdon, J., & Woods, H. B. (2021). The experimental research funder’s handbook (RoRI Working Paper No.6). https://doi.org/10.6084/m9.figshare.19459328.v1
  8. Bendiscioli, S., & Garfinkel, M. (2021). Dealing with the limits of peer review with innovative approaches to allocating research funding. https://www.embo.org/documents/science_policy/peer_review_report.pdf
  9. Bollen, J., Crandall, D., Junk, D., Ding, Y., & Börner, K. (2014). From funding agencies to scientific agency. EMBO Reports, 15(2),131-333.
  10. Bornmann, L., Wallon, G., & Ledin, A. (2008). Does the committee peer review select the best applicants for funding? An investigation of the selection process for two European molecular biology organization programmes. PLoS ONE, 3(10), e3480.
  11. Brainard, J. (2025). Should grant applicants judge competitors’ proposals? Science, 389(6756), 120-120.
  12. Bromham, L., Dinnage, R., & Hua, X. (2016). Interdisciplinary research has consistently lower funding success. Nature, 534, 684-687.
  13. Chawla, D. S. (2021, May 6). Swiss funder draws lots to make grant decisions. Nature Career News. https://doi.org/10.1038/d41586-021-01232-3
  14. Chen, L. (2021). Non-consensus research and the improvement of original innovation ability in university. Science & Technology Progress and Policy, 38(12), 19-24.
  15. Clements, J. C. (2020). Don’t be a prig in peer review. Nature, 585, 472-472.
  16. Cole, S., Cole, J. R., & Simon, G. A. (1981). Chance and consensus in peer-review. Science, 214, 881-886.
  17. Cole, S., Rubin, L., & Cole, J. R. (1977). Peer review and the support of science. Scientific American, 237(4), 34-41.
  18. Coveney, J., Herbert, D. I., Hill, K., Mow, K. E., Graves, N., & Barnett, A. (2017). “Are you siding with a personality or the grant proposal?” Observations on how peer review panels function. Research Integrity and Peer Review, 2, art. 19.
  19. Csiszar, A. (2016). Troubled from the start. Nature, 532, 306-308.
  20. De George, R.T., & Woodward, F. (1994). Ethics and manuscript reviewing. Journal of Scholarly Publishing, 25(3), 133-145.
  21. De Peuter, S., & Conix, S. (2022). The modified lottery: Formalizing the intrinsic randomness of research funding. Accountability in Research, 29(5), 324-345.
  22. De Rijcke, S., Wouters, P. F., Rushforth, A. D., Franssen, T. P., & Hammarfelt, B. (2016). Evaluation practices and effects of indicator use – A literature review. Research Evaluation, 25(2), 161-169.
  23. De Vrieze, J. (2017). Funders groan under growing review burden. Science, 357(6349), 343-343.
  24. DORA. (2012). San Francisco declaration on research assessment. DORA-ASCB. http://www.ascb.org/dora
  25. Fang, F. C., Bowen, A., & Casadevall, A. (2016). NIH peer review percentile scores are poorly predictive of grant productivity. eLife, 5, e13323.
  26. Fasio, L. (2025). What you can do when your research funding is axed? Nature, 641(8064), 824-824.
  27. Feliciani, T., Morreau, M., Luo, J., Lucas, P., & Shankar, K. (2022). Designing grant-review panels for better funding decisions: lessons from an empirically calibrated simulation model. Research Policy, 51, art. 104467.
  28. Fried, M. (2007). Should journals compensate referees? Notices of the AMS, May, p. 589.
  29. Frijters, P., & Torgler, B. (2019). Improving the peer review process: a proposed market system. Scientometrics, 119(2), 1285-1288.
  30. Gallo, S. A., Thompson, L. A., Schmaling, K. B., & Glisson, S. R. (2020). The participation and motivations of grant peer reviewers: A comprehensive survey. Science and Engineering Ethics, 26, 761-782. https://doi.org/10.1007/s11948-019-00123-1
  31. Guthrie, S. (2019). Innovating in the Research Funding Process: Peer Review Alternatives and Adaptations. AcademyHealth.
  32. Guthrie, S., Ghiga, I., & Wooding, S. (2018). What do we know about grant peer review in the health sciences? F1000Research, 6, 1335. https://doi.org/10.12688/f1000research.11917.2
  33. Hayes, M., & Hardcastle, J. (2019). Grant Review in Focus. London: Publons.
  34. HHMI. (2024). About HHMI Nobel Laureates. https://www.hhmi.org/about/nobel-laureates
  35. Hochberg, M. E., Chase, J. M., Gotelli, N. J., Hastings, A., & Naeem, S. (2009). The tragedy of the reviewer commons. Ecology Letters, 12(1), 2-4.
  36. Hojat, M., Gonella, J. S., & Caelleigh, A. S. (2003). Impartial Judgment by the “Gatekeepers” of Science: Fallibility and Accountability in the Peer Review Process. Advances in Health Sciences Education, 8(1), 75-96.
  37. Hoppe, T. A., Litovitz, A., Willis, K. A., Meseroll, R. A., Perkins, M. J., Hutchins, B. I., Davis, A. F., Lauer, M. S., Valantine, H. A., Anderson, J. M., & Santangelo, G. M. (2019). Topic choice contributes to the lower rate of NIH awards to African-American/black scientists. Science Advances, 5, eaaw7238.
  38. Horbach, S. P. J. M. (2021). No time for that now! Qualitative changes in manuscript peer review during the Covid-19 pandemic. Research Evaluation, 30(3), 231-239.
  39. Hug, S. E., & Ochsner, M. (2022). Do peers share the same criteria for assessing grant applications? Research Evaluation, 31(1), 104-117. https://doi.org/10.1093/reseval/rvab034
  40. Jacobson, S. H. (2017). NSF: Peer review peer-review processes. ORMS Today, 44(6), 12-13.
  41. Johnson, M. H., Cohen, J., & Grudzinskas, G. (2012). The uses and abuses of bibliometrics. Reproductive Biomedicine Online, 24(5), 485-486.
  42. Kolev, J., Fuentes-Medel, Y., & Murray, F. (2020). Gender differences in scientific communication and their impact on grant funding decisions. AEA Papers and Proceedings, 110, 245-249.
  43. Kummeling, H., Kluijtmans, M., & Miedema, F. (2024). The University in Transition. Utrecht: Utrecht University.
  44. Lee, C. J., & Moher, D. (2017). Promote scientific integrity via journal peer review data. Science, 357(6348), 256-257.
  45. Lee, C. J., Sugimoto, C. R., Zhang, G., & Cronin, B. (2013). Bias in peer review. Journal of the American Society for Information Science and Technology, 64(1), 2-17.
  46. Li, D. (2017). Expertise versus bias in evaluation: Evidence from the NIH. American Economic Journal: Applied Economics, 9(2), 60-92.
  47. Li, D., & Agha, L. (2015). Big names or big ideas: Do peer-review panels select the best science proposals? Science, 348(6233), 434-438.
  48. Li, X., Zhao, Y., Hao, H., Zheng, Z., & Yang, L. (2024). Policy exploration of original innovation in basic research: From non-consensus innovation to original exploratory program. Bulletin of National Science Foundation of China, 38(2), 320-327.
  49. Liu, Y. X., & Rousseau, R. (2023). A proposal for the peer review procedure for funding decisions. Scientometrics, 128(1), 861-865. https://doi.org/10.1007/s11192-022-04538-9
  50. Luo, J. W., Ma, L., & Shankar, K. (2021). Does the inclusion of non-academic reviewers make any difference for grant impact panels? Science and Public Policy, 48(6), 763-775. https://doi.org/10.1093/scipol/scab046
  51. Ma, L., Luo, J. W., Feliciani, T., & Shankar, K. (2020). How to evaluate ex-ante impact of funding proposals? An analysis of reviewers’ comments on impact statements. Research Evaluation, 29(4), 431-440.
  52. Mallard, G., Lamont, M., & Guetzkow, J. (2009). Fairness as appropriateness: Negotiating epistemological differences in peer review. Science, Technology & Human Values, 34(5), 573-606.
  53. Marhoffer, E. A., Ein-Alshaeba, S., Grimshaw, A. A., Holleck, J. L., Rudikoff, B., Bastian, L., & Gunderson, C. G. (2024). Gender disparity in full professor rank among academic physicians: A systematic review and metaanalysis. Academic Medicine, 99(7), 801-809. https://doi.org/10.1097/ACM.0000000000005695
  54. Marsh, H. W., & Ball, S. (1981). Interjudgmental reliability of reviews for the Journal of Educational Psychology. Journal of Educational Psychology, 73(6), 872-880.
  55. Maxwell, K., & Benneworth, P. (2018). The construction of new scientific norms for solving Grand Challenges. Palgrave Communications, 4(1), 52.
  56. Meadmore, K. (2020, Oct. 29). Do we need transparency for trust in peer review for research funding? NIHR Blog. https://www.nihr.ac.uk/blog/do-we-need-transparency-for-trust-in-peer-review-for-research-funding/25674
  57. Meadmore, K., Fackrell, K., Recio-Saucedo, A., Bull, A., Fraser, S. D. S., & Blatch-Jones, A. (2020). Decisionmaking approaches used by UK and international health funding organisations for allocating research funds: A survey of current practice. PLoS One, 15(11), e0239757.
  58. Merrifield, M. R., & Saari, D. G. (2009). Telescope time without tears: A distributed approach to peer review. Astronomy and Geophysics, 50(4), 16-20.
  59. Merton, R. K. (1968). The Matthew effect in science. Science, 159, 56-63.
  60. Moussian, B. (2016). Taking peer review seriously. EMBO Reports, 17(5), 617-617.
  61. Mutz, R., Bornmann, L., & Daniel, H.-D. (2015). Testing for the fairness and predictive validity of research funding decisions: A multilevel multiple imputation for missing data approach using ex-ante and ex-post peer review evaluation data from the Austrian Science Fund. Journal of the Association for Information Science and Technology, 66(11), 2321-2330.
  62. Nature. (2021). Research evaluation must change after the pandemic. Nature, 591(7948), 7.
  63. Nicholas, N., Watkinson, A., Jamali, H. R., Herman, E., Tenopir, C., Volentine, R., Allard, S., & Levine, K. (2015). Peer review: Still king in the digital age. Learned Publishing, 28(1), 15-21.
  64. NSFC. (1986). Application Preparation and Submission. https://www.nsfc.gov.cn/english/site_1/funding/E1/2022/01-12/25901.html
  65. Oxley, K., & Gulbrandsen, M. (2024). Variability and negligence: Grant peer review panels evaluating impact ex ante. Science and Public Policy, scae081. https://doi.org/10.1093/scipol/scae081
  66. Packalen, M., & Bhattacharya, J. (2020). NIH funding and the pursuit of edge science. Proceedings of the National Academy of Sciences of the United States of America, 117(22), 12011-12016.
  67. Parrilla-Gutierrez, J. M. (2021, Feb. 17). Dear grant agencies: Tell me where I went wrong. Nature Career Column. https://doi.org/10.1038/d41586-021-00444-x
  68. Pearson, H. (2025). How to speed up peer review: Applicants mark one another. Nature, 643(8071), 313-314.
  69. Peters, D., & Ceci, S. (1982). Peer-review practices of psychological journals: The fate of submitted articles, submitted again. Behavioral Brain Science, 5, 187-255.
  70. Pier, E. L., Brauer, M., Filut, A., Kaatz, A., Raclaw, J., Nathan, M. J., … & Carnes, M. (2018). Low agreement among reviewers evaluating the same NIH grant applications. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 2952-2957.
  71. Price, S., & Flach, P. A. (2017). Computational support for academic peer review: A perspective from artificial intelligence. Communications of the ACM, 60(3), 70-79.
  72. Ramos, A., & Sarrico, C. S. (2016). Past performance does not guarantee future results: Lessons from the evaluation of research units in Portugal. Research Evaluation, 25(1), 94-106.
  73. Rosenthal, R., & Jacobson, L. (1992). Pygmalion in the classroom: Teacher expectation and pupils’ intellectual development (Newly expanded ed.). Crown House Publishing.
  74. Rousseau, R. (2021). Do COVID-related articles pass through the fast lane? The case of the International Journal of Infectious Diseases. In W. Glänzel, S. Heeffer, P. Chi, & R. Rousseau (Eds). Proceedings of the 18th International Conference on Scientometrics & Informetrics (ISSI 2021) (pp. 1533-1534). International Society for Scientometrics and Informetrics.
  75. Rousseau, R., Egghe, L., & Guns, R. (2018). Becoming metric-wise: A bibliometric guide for researchers. Chandos Publishing (Elsevier).
  76. Rousseau, R., Guns, G., Jakaria Rahman, A. I. M., & Engels, T. C. E. (2017). Measuring cognitive distance between publication portfolios. Journal of Informetrics, 11(2), 583-594.
  77. Rousseau, R., & Rousseau, S. (2021). Bibliometric techniques and their use in business and economics research. Journal of Economic Surveys, 35(95), 1428-1451.
  78. Severin, A., & Chataway, J. (2021). Purposes of peer review: A qualitative study of stakeholder expectations and perceptions. Learned Publishing, 34, 144-155.
  79. Smith, R. (2006). Peer review: A flawed process at the heart of science and journals. Journal of the Royal Society of Medicine, 99(4), 178-182.
  80. Sohn, E. (2020). Secrets to writing a winning grant. Nature, 577, 133-135.
  81. Squazzoni, F., Ahrweiler, P., Barros, T., Bianchi, F., Birukou, A., Blom, H. J. J., … & Willis, M. (2020). Unlock ways to share data on peer review. Nature, 578(7796), 512-514.
  82. Squazzoni, F., & Gandelli, C. (2012). Saint Matthew strikes again: An agent-based model of peer review and the scientific community structure. Journal of Informetrics, 6(2), 265-275.
  83. State Council of the People’s Republic of China. (2024). Regulations of the National Natural Science Foundation of China. https://www.nsfc.gov.cn/publish/portal0/tab471/info93942.htm
  84. Strauss, D. H., White, S. H., & Bierer, B. E. (2021). Justice, diversity, and research ethics review. Science, 371(6535), 1209-1211.
  85. Tang, S., Li, W., Liu, Q., & Liu, Y. (2021). RCC: NSFC’s new review mechanism: Its missions and challenges. In W. Glänzel, S. Heeffer, P.-S. Chi, & R. Rousseau (Eds.), Proceedings of ISSI2021 (pp. 1543-1544). KU Leuven University Press.
  86. Thorngate, W., & Chowdhury, W. (2014). By the numbers: Track record, awed reviews, journal space, and the fate of talented authors. In B. Kamiński & G. Koloch (Eds.), Advances in Social Simulation (pp. 177-188). Springer-Verlag.
  87. Triggle, C. R., & Triggle, D. J. (2007). What is the future of peer review? Why is there fraud in science? Is plagiarism out of control? Why do scientists do bad things? Is it all a case of: “All that is necessary for the triumph of evil is that good men do nothing?”. Vascular Health and Risk Management, 3(1), 39-46.
  88. Turner, S., Bull, A., Chinnery, C., Hinks, J., Mcardle, N., Moran, R., Payne, H., Woodford Guegan, E., Worswick, L., & Wyatt, J. C. (2018). Evaluation of stakeholder views on peer review of NIHR applications for funding: A qualitative study. BMJ Open, 8, e022548. Doi:10.1136/bmjopen-2018-022548
  89. UNESCO. (2024). UNESCO Call to Action: Closing the gender gap in science. https://unesdoc.unesco.org/ark:/48223/pf0000388641
  90. Veugelers, R., Wang, J., & Stephan, P. (2025). Do funding agencies select and enable novel research: evidence from ERC. Economics of Innovation and New Technology. https://doi.org/10.1080/10438599.2025.2486344
  91. Wang, J., & Shah, N. B. (2019). Your 2 is my 1, your 3 is my 9: Handling arbitrary miscalibrations in ratings. In Proceedings of the 18th International Conference on Autonomous Agents and Multi-Agent Systems (pp. 864-872).
  92. Wang, J., Veugelers, R., & Stephan, P. E. (2017). Bias against novelty in science: A cautionary tale for users of bibliometric indicators. Research Policy, 46(8), 1416-1436. https://doi.org/10.1016/j.respol.2017.06.006.
  93. Wang, Y., Li, X., & Zheng, Y. (2011). The interactive heuristic review mechanism: A new method of assessing pioneering research projects of the National Natural Science Foundation of China. Research Evaluation, 20(4), 267-274.
  94. Ware, M. (2008). Peer review: Benefits, perceptions and alternatives (Summary Papers 4). Publishing Research Consortium.
  95. Wilson, R., & Lancaster, J. (2006). ‘Referee factor’ would reward a vital contribution. Nature, 441(7095), 812-812.
  96. Woolston, C. (2021). UK funder’s data point to uneven playing field. Nature, 591(7851), 683-684.
  97. Yang, H., Hao, H., Zhao, Y., Guo, X., Zheng, Z., Yang, L., & Wang, Y. (2024). Overview of proposals received by National Natural Science Foundation of China in 2023 during the intensive reception period. Bulletin of the National Science Foundation of China, 38(1), 2-7.
  98. Yang, L. (2003). Second peer review of foundation project—a case study. Bulletin of National Natural Science Foundation of China, 17(1), 50-53.
  99. Zhao, P., Sun, C., & Hao, H. (2025). The NSFC will experimentally implement key non-consensus projects. National Natural Science Foundation of China. https://www.nsfc.gov.cn/publish/portal0/tab440/info95140.htm
  100. Zhao, Y., Hao, H., Li, X., Zheng, Z., & Yang, L. (2023). Inspiration from the NSFC’s funding of original basic research: A case study on the pilot implementation of the original exploration program. China Soft Science Magazine, 10, 9-20.
  101. Zhou, Z., & Zhao, W. (2019). Funding system reform for excellence in science: An interview with Jinghai Li, President of NSFC. National Science Review, 6, 177-181.
  102. Ziman, J. (1968). Public Knowledge: An Essay Concerning the Social Dimension of Science. Cambridge University Press.
DOI: https://doi.org/10.2478/jdis-2025-0050 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Submitted on: Mar 13, 2025
Accepted on: Sep 2, 2025
Published on: Oct 6, 2025
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yuxian Liu, Sisi Li, Ronald Rousseau, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT