References
- Ackers, L. (2005). Moving people and knowledge: Scientific mobility in the European Union. International migration, 43(5), 99-131.
- Amelina, A. (2013). Hierarchies and categorical power in cross-border science: Analysing scientists’ transnational mobility between Ukraine and Germany. Southeast European and Black Sea Studies, 13(2), 141-155.
- Appelt, S., van Beuzekom, B., Galindo-Rueda, F., & de Pinho, R. (2015). Which factors influence the international mobility of research scientists? In Global mobility of research scientists (pp. 177-213). Elsevier.
- Austin, P. C. (2008). A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in medicine, 27(12), 2037-2049.
- Austin, P. C. (2009). Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal, 51(1), 171-184.
- Azoulay, P., Ganguli, I., & Zivin, J. G. (2017). The mobility of elite life scientists: Professional and personal determinants. Research policy, 46(3), 573-590. https://doi.org/10.1016/j.respol.2017.01.002
- Beine, M., Docquier, F., & Rapoport, H. (2001). Brain drain and economic growth: theory and evidence. Journal of Development Economics, 64(1), 275-289.
- Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics, 8(4), 895-903.
- Cao, C., Baas, J., Wagner, C. S., & Jonkers, K. (2020). Returning scientists and the emergence of China’s science system. Science and Public Policy, 47(2), 172-183.
- Cao, C., & Simon, D. F. (2021). China’s talent challenges revisited. In E. Baark, B. Hofman, & J. Qian (Eds.), Innovation and China’s global emergence (pp. 90-112). NUS Press.
- Carlson, T., & Martin-Rovet, D. (1995). The implications of scientific mobility between France and the United States. Minerva, 211-250.
- Chand, M., & Tung, R. L. (2019). Skilled immigration to fill talent gaps: A comparison of the immigration policies of the United States, Canada, and Australia. Journal of International Business Policy, 2, 333-355.
- Chepurenko, A. (2015). The role of foreign scientific foundations’ role in the cross-border mobility of Russian academics. International Journal of Manpower, 36(4), 562-584.
- Clauset, A., Arbesman, S., & Larremore, D. B. (2015). Systematic inequality and hierarchy in faculty hiring networks. Science Advances, 1(1), e1400005.
- Conchi, S., & Michels, C. (2014). Scientific mobility: An analysis of Germany, Austria, France and Great Britain (Fraunhofer ISI Discussion Papers Innovation Systems and Policy Analysis, No. 41). Fraunhofer-Institut für System-und Innovationsforschung ISI. https://hdl.handle.net/10419/94371
- Cooke, F. L., Saini, D. S., & Wang, J. (2014). Talent management in China and India: A comparison of management perceptions and human resource practices. Journal of world business, 49(2), 225-235.
- Costas, R., Van Leeuwen, T. N., & Bordons, M. (2010). A bibliometric classificatory approach for the study and assessment of research performance at the individual level: The effects of age on productivity and impact. Journal of the American society for information science and technology, 61(8), 1564-1581.
- Czaika, M., & Orazbayev, S. (2018). The globalisation of scientific mobility, 1970–2014. Applied Geography, 96, 1-10.
- Deng, X., Liang, L., Wu, F., Wang, Z., & He, S. (2022). A review of the balance of regional development in China from the perspective of development geography. Journal of Geographical Sciences, 32(1), 3-22.
- Deville, P., Wang, D., Sinatra, R., Song, C., Blondel, V. D., & Barabási, A.-L. (2014). Career on the move: Geography, stratification and scientific impact. Scientific reports, 4(1), 1-7.
- Edler, J., Fier, H., & Grimpe, C. (2011). International scientist mobility and the locus of knowledge and technology transfer. Research policy, 40(6), 791-805.
- Florida, R., Mellander, C. P., & Stolarick, K. M. (2010). Talent, technology and tolerance in Canadian regional development. The Canadian Geographer/Le Géographe canadien, 54(3), 277-304.
- Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., Petersen, A. M., Radicchi, F., Sinatra, R., & Uzzi, B. (2018). Science of science. Science, 359(6379), eaao0185.
- Fullerton, A. S. (2009). A conceptual framework for ordered logistic regression models. Sociological Methods & Research, 38(2), 306-347.
- Gates, A. J., & Barabási, A.-L. (2023). Reproducible Science of Science at scale: pySciSci. Quantitative Science Studies, 1-17.
- Geuna, A. (2015). Global mobility of research scientists: The economics of who goes where and why. Academic Press.
- Gomez, C. J., Herman, A. C., & Parigi, P. (2020). Moving more, but closer: Mapping the growing regionalization of global scientific mobility using ORCID. Journal of Informetrics, 14(3), 101044.
- Guan, J., & Chen, Z. (2012). Patent collaboration and international knowledge flow. Information Processing & Management, 48(1), 170-181.
- Haunschild, R., & Bornmann, L. (2023). Identification of potential young talented individuals in the natural and life sciences: a bibliometric approach. Journal of Informetrics, 17(3), 101394.
- Hill, J., & Reiter, J. P. (2006). Interval estimation for treatment effects using propensity score matching. Statistics in medicine, 25(13), 2230-2256.
- Hu, B., Liu, Y., Zhang, X., & Dong, X. (2020). Understanding regional talent attraction and its influencing factors in China: From the perspective of spatiotemporal pattern evolution. Plos One, 15(6), e0234856.
- Huang, Y., Tian, C., & Ma, Y. (2023). Practical operation and theoretical basis of difference-in-difference regression in science of science: The comparative trial on the scientific performance of Nobel laureates versus their coauthors. Journal of Data and Information Science, 8(1), 29-46.
- Issa, H., & Kogan, A. (2014). A predictive ordered logistic regression model as a tool for quality review of control risk assessments. Journal of Information Systems, 28(2), 209-229.
- Jałowiecki, B., & Gorzelak, G. J. (2004). Brain drain, brain gain, and mobility: Theories and prospective methods. Higher Education in Europe, 29(3), 299-308.
- Jin, C., Ma, Y., & Uzzi, B. (2021). Scientific prizes and the extraordinary growth of scientific topics. Nature communications, 12(1), 1-11.
- Jonkers, K., & Tijssen, R. (2008). Chinese researchers returning home: Impacts of international mobility on research collaboration and scientific productivity. Scientometrics, 77, 309-333.
- Kalsø Hansen, H. (2007). Technology, Talent and Tolerance - The Geography of the Creative Class in Sweden. (RAPPORTER OCH NOTISER; Vol. 169). Department of Social and Economic Geography, Lund University.
- Kato, M., & Ando, A. (2017). National ties of international scientific collaboration and researcher mobility found in Nature and Science. Scientometrics, 110, 673-694.
- Kwok, L., Adams, C. R., & Price, M. A. (2011). Factors influencing hospitality recruiters’ hiring decisions in college recruiting. Journal of Human Resources in Hospitality & Tourism, 10(4), 372-399.
- Lee, J. T. (2014). Education hubs and talent development: Policymaking and implementation challenges. Higher Education, 68(6), 807-823.
- Leuven, E., & Sianesi, B. (2003). PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing [Computer software]. Boston College Department of Economics. https://ideas.repec.org/c/boc/bocode/s432001.html
- Li, F., & Tang, L. (2019). When international mobility meets local connections: Evidence from China. Science and Public Policy, 46(4), 518-529.
- Li, Z. (2021). ORCID-based study of researcher mobility trends in China [基于ORCID的中国科研人员流动趋势研究] (Master’s thesis, Nanjing Agricultural University). Nanjing Agricultural University. https://doi.org/10.27244/d.cnki.gnjnu.2021.000835
- Liu, J., Wang, R., & Xu, S. (2021). What academic mobility configurations contribute to high performance: an fsQCA analysis of CSC-funded visiting scholars. Scientometrics, 126, 1079-1100.
- Liu, M., & Hu, X. (2021). Will collaborators make scientists move? A Generalized Propensity Score analysis. Journal of Informetrics, 15(1), 101113.
- Liu, M., & Hu, X. (2022). Movers’ advantages: The effect of mobility on scientists’ productivity and collaboration. Journal of Informetrics, 16(3), 101311.
- Liu, Q., Turner, D., & Jing, X. (2019). The “double first-class initiative” in China: Background, implementation, and potential problems. Beijing International Review of Education, 1(1), 92-108.
- Luo, Z., Gardiner, J. C., & Bradley, C. J. (2010). Applying propensity score methods in medical research: pitfalls and prospects. Medical Care Research and Review, 67(5), 528-554.
- Mellander, C., & Florida, R. (2011). Creativity, talent, and regional wages in Sweden. The Annals of Regional Science, 46, 637-660.
- Millard, D. (2005). The impact of clustering on scientific mobility: A case study of the UK. Innovation, 18(3), 343-359.
- Moed, H. F., & Halevi, G. (2014). A bibliometric approach to tracking international scientific migration. Scientometrics, 101, 1987-2001.
- Nishikawa-Pacher, A., Heck, T., & Schoch, K. (2022). Open editors: a dataset of scholarly journals’ editorial board positions. Research Evaluation, 32(2), 228-243. https://doi.org/10.1093/reseval/rvac037
- Pao, M. L. (1992). Global and local collaborators: a study of scientific collaboration. Information Processing & Management, 28(1), 99-109.
- Pellens, M. (2012). The motivations of scientists as drivers of international mobility decisions (FBE Research Report MSI_1202). KU Leuven - Faculty of Business and Economics.
- Peters, M. A., & Besley, T. (2018). China’s double first-class university strategy: 双—流(Double First-Class). Educational Philosophy and Theory, 50(12), 1075-1079. https://doi.org/10.1080/00131857.2018.1438822
- Petersen, A. M. (2018). Multiscale impact of researcher mobility. Journal of The Royal Society Interface, 15(146), 20180580.
- Priem, J., Piwowar, H., & Orr, R. (2022). OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. arXiv. https://arxiv.org/abs/2205.01833
- Qian, H. (2010). Talent, creativity and regional economic performance: The case of China. The Annals of Regional Science, 45, 133-156.
- Ren, W., Xue, B., Yang, J., & Lu, C. (2020). Effects of the Northeast China revitalization strategy on regional economic growth and social development. Chinese Geographical Science, 30, 791-809.
- Robertson, S. L. (2006). Brain drain, brain gain and brain circulation. Globalisation, Societies and Education, 4(1), 1-5. https://doi.org/10.1080/14767720600554908
- Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55.
- Saxenian, A. (2005). From brain drain to brain circulation: Transnational communities and regional upgrading in India and China. Studies in Comparative International Development, 40, 35-61.
- Séguin, B., Singer, P. A., & Daar, A. S. (2006). Scientific diasporas. Science, 312(5780), 1602-1603.
- Shi, D., Liu, W., & Wang, Y. (2023). Has China’s Young Thousand Talents program been successful in recruiting and nurturing top-caliber scientists? Science, 379(6627), 62-65.
- Solimano, A. (2006). The international mobility of talent and its impact on global development (Discussion Paper No. 2006/08). UNU World Institute for Development Economics Researc.
- Tarique, I., & Schuler, R. S. (2010). Global talent management: Literature review, integrative framework, and suggestions for further research. Journal of World Business, 45(2), 122-133.
- Tejada Guerrero, G. (2012). Mobility, Knowledge and Cooperation: Scientific Diasporas as Agents of Change. Migration and Development, 10(18), 59-92.
- Thorn, K., & Holm-Nielsen, L. B. (2008). International mobility of researchers and scientists: Policy options for turning a drain into a gain. In A. Solimano (Ed.). The international mobility of talent: Types, causes, and development impact (pp.145-167). Oxford University Press.
- Trippl, M. (2013). Scientific mobility and knowledge transfer at the interregional and intraregional level. Regional studies, 47(10), 1653-1667.
- Tymon Jr, W. G., Stumpf, S. A., & Doh, J. P. (2010). Exploring talent management in India: The neglected role of intrinsic rewards. Journal of world business, 45(2), 109-121.
- Venturini, S., Sikdar, S., Rinaldi, F., Tudisco, F., & Fortunato, S. (2023). Collaboration and topic switches in science. arXiv. https://doi.org/10.48550/arXiv.2304.06826
- Verginer, L., & Riccaboni, M. (2021). Talent goes to global cities: The world network of scientists’ mobility. Research policy, 50(1), 104127.
- Waltman, L., & van Eck, N. J. (2012). The inconsistency of the h-index. Journal of the American society for information science and technology, 63(2), 406-415.
- Wang, K., Shen, Z., Huang, C., Wu, C.-H., Eide, D., Dong, Y., Qian, J., Kanakia, A., Chen, A., & Rogahn, R. (2019). A review of microsoft academic services for science of science studies. Frontiers in Big Data, 2, 45. https://doi.org/10.3389/fdata.2019.00045
- Wang, Q., Tang, L., & Li, H. (2015). Return migration of the highly skilled in higher education institutions: A Chinese university case. Population, Space and Place, 21(8), 771-787.
- Wang, Y., Luo, H., & Yang, G. (2022). An analysis of the inter-provincial mobility network of scientific researchers in China and its evolution. Science Research Management, 43(3), 79-88. https://doi.org/10.19571/j.cnki.1000-2995.2022.03.010
- Wei, F., & Zhang, G. (2020). Measuring the scientific publications of double first-class universities from mainland China. Learned publishing, 33(3), 230-244.
- Wong, K.-y., & Yip, C. K. (1999). Education, economic growth, and brain drain. Journal of Economic Dynamics and Control, 23(5-6), 699-726. https://doi.org/10.1016/S0165-1889(98)00040-2
- Yin, X., & Zong, X. (2022). International student mobility spurs scientific research on foreign countries: Evidence from international students studying in China. Journal of Informetrics, 16(1), 101227.
- Yuret, T. (2017). An analysis of the foreign-educated elite academics in the United States. Journal of Informetrics, 11(2), 358-370.
- Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714-715, 1-73.https://doi.org/10.1016/j.physrep.2017.10.001
- Zhang, F., Liu, H., Zhang, J., & Cheng, Y. (2022). The evolution of China’s high-level talent mobility network: A comparative analysis based on school and work stage. Complexity, 2022, 7353462. https://doi.org/10.1155/2022/7353462
- Zhao, Z., Bu, Y., Kang, L., Min, C., Bian, Y., Tang, L., & Li, J. (2020). An investigation of the relationship between scientists’ mobility to/from China and their research performance. Journal of Informetrics, 14(2), 101037.
- Zhao, Z., Li, J., Min, C., Bu, Y., Kang, L., & Bian, Y. (2019). Scientists’ academic disruptiveness significantly increased after they moved to China. Proceedings of the Association for Information Science and Technology, 56(1), 852-854.
- Zhou, J., Zeng, A., Fan, Y., & Di, Z. (2018). Identifying important scholars via directed scientific collaboration networks. Scientometrics, 114(3), 1327-1343.
- Zhu, W., Jin, C., Ma, Y., & Xu, C. (2023). Earlier recognition of scientific excellence enhances future achievements and promotes persistence. Journal of Informetrics, 17(2), 101408.
- Zweig, D., Fung, C. S., & Han, D. (2008). Redefining the brain drain: China’s ‘diaspora option ‘. Science, Technology and Society, 13(1), 1-33.
- Zweig, D., Siqin, K., & Huiyao, W. (2020). ‘The best are yet to come:’state programs, domestic resistance and reverse migration of high-level talent to China. Journal of Contemporary China, 29(125), 776-791. https://doi.org/10.1080/10670564.2019.1705003