Abramo, G., Cicero, T., & D’Angelo, C. A. (2013). National peer-review research assessment execises for the hard sciences can be a complete waste of money: the Italian case. Scientometrics, 95, 311-324.
Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, citation indicators, and research quality: An overview of basic concepts and theories. SAGE Open, 9(1), 1-17.
Bornmann, L., & Daniel, H.-D. (2007). What do we know about the h index. Journal of the American Society for information Science and Technology, 58, 1381-1385.
Bornmann, L., Leydesdorff, L., & Mutz, R. (2013). The use of percentile and percentile rank classes in the analysis of bibliometric data: opportunities and limits. Journal of Informetrics, 7(1), 158-165.
Bornmann, L., Ye, A., & Ye, F. (2018). Identifying landmark publications in the long run using field-normalized citation data. Journal of Documentation, 74(2), 278-288.
Conover, W. J., & Iman, R. (1981). Rank transformations as a bridge between parametric and nonparametric statitics. The American Statistician, 35(3), 124-129.
Docampo, D., & Besoule, J.-J. (2019). A new appraoch to the analysis and evaluation of the research output of countries and institutions. Scientometrics, 119(2), 1207-1225.
European Commission. (2018). Science, Research and Innovation Performance of the EU 2018. Strengthening the foundations for Europe’s future. Publications Office of the European Union.
European Commission. (2020). Science, Research and Innovation Performance of the EU 2020. A fair, green and digital Europe. Publication Office of the European Union.
European Commission. (2022). Science, Reserach and Innovation Performance of the EU. Building a sustainable future in uncertain times. Publication Office of the European Union.
European Commission. (2024). Science, Reserach and Innovation Performance of the EU. A competitive Europe for a sustainable future. Publication Office of the European Union.
Garfield, E., & Welljams-Dorof, A. (1992). Citation data: their use as quantitative indicators for science and technology evaluations and policy-making. Science and Public Policy, 19(5), 321-327.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific reserach output. Proceedins of the National Academy of Sciences USA, 102(46), 16569-16572.
Hu, X., & Rousseau, R. (2019). Do citation chimeras exist? The case of under-cited influential articles suffering delayed recognition. Journal of the Association for Information Science and Technology, 70(5), 499-508.
Mcalister, P. R., Narin, F., & Corrigan, J. G. (1983). Programmatic evaluation and comparison based on standardized citatio scores. IEEE Transactions on Engineering Managament, EM-30, 205-2011.
Merton, R. K. (1979). Foreword. In E. Garfield (Ed), Citation Indexing -Its Theory and Application in Science, Technology, and Humanities. John Wiley & Sons.
Min, C., Bu, Y., Wu, D., Ding, Y., & Zhang, Y. (2021). Identifying citation patterns of scientific breakthroughs: A perspective o dynamic citation process. Information Processing & Management, 58(1), 102428.
Narin, F. (1976). Evaluative bibliometrics: The Use of Publication and Citation Analysis in the Evaluation of Scientific Activity. Computer Horizon Inc.
Olensky, M., Schmidt, M., & van Eck, N. J. (2015). Evaluation of the citation matching algorithms of CWTS and iFQ in comparison to the Web of Science. Journal of the Association for Information Science and Technology, 67(10), 2550-2564.
Pendlebury, D. A. (2020). When the data don’t mean what they say: Japan’s comparative underperformance in citation impact. In C. Daraio & W. Glanzel (Eds.), Evaluative Informetrics: The Art of Metrics-based Research Assessment. Springer.
Perianes-Rodriguez, A., & Ruiz-Castillo, J. (2016). University citation distributions. Journal of the Association for Information Science and Technology, 67(11), 2790-2804.
Price, D. J. D. S. (1965). Networks of scientific papers: The pattern of bibliographic references indicates the nature of the scientific research front. Science, 149(3683), 510-515.
Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: toward an objective measure of scientific impact. Proceedins of the National Academy of Sciences USA, 105(45), 17268-17272.
Rodríguez-Navarro, A. (2024). Citation distributions and reserach evaluations: The impossibility of formulating a universal indicator. Journal of Data and Information Science, 9(4), 24-48.
Rodríguez-Navarro, A., & Brito, R. (2018b). Technological research in the EU is less efficient than the world average. EU research policy risks Europeans’ future. Journal of Informetrics, 12(3), 718-731.
Rodríguez-Navarro, A., & Brito, R. (2019). Probability and expected frequency of breakthroughs – basis and use of a robust method of research assessment. Scientometrics, 119(1), 213-235.
Rodríguez-Navarro, A., & Brito, R. (2020). Like-for-like bibliometric substitutes for peer review: advantages and limits of indicators calculated from the ep index. Research Evaluation, 29(2), 215-230.
Rodríguez-Navarro, A., & Brito, R. (2021b). Total number of papers and in a single percentile fully describes research impact – Revisiting concepts and applications. Quantitative Science Studies, 2(2), 544-559.
Rodríguez-Navarro, A., & Brito, R. (2022). The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy. Scientometrics, 127(5), 2871-2896.
Rodríguez-Navarro, A., & Brito, R. (2024a). The extreme upper tail of Japan’s citation distribution reveals its research success. Quality & Quantity, 58(4), 3831-3844.
Rodríguez-Navarro, A., & Brito, R. (2024b). Rank analysis of most cited publications, a new approach for research assessments. Journal of Informetrics, 18(2), 101503.
Schlagberger, E. M., Bornmann, L., & Bauer, J. (2016). At what institutions did Nobel laureates do their prizewinning work? An analysis of bibliographical information on Nobel laureates from 1994 to 2014. Scientometrics, 109, 723-767.
Schneider, J. W., & Costas, R. (2017). Identifying potential “breakthrough” publications using refined citation analyses: Three related explorative approaches. Journal of the Association for Information Science and Technology, 68(3), 709-723.
Thelwall, M. (2016). Are there too many articles? Zero inflated variants of the discretised lognormal and hooked power law. Journal of Informetrics, 10(2), 622-633.
Thelwall, M., Kousha, K., Stuart, E., Makita, M., Abdoli, M., Wilson, P., & Levitt, J. (2023). In which fields are citations indicators of reserach quality? Journal of the Association for Information Science and Technology, 74(8), 941-953.
Traag, V. A., & Waltman, L. (2019). Systematic analysis of agreement between metrics and peer review in the UK REF. Palgrave Communications, 5(1), 29. https://doi.org/10.1057/s41599-019-0233-x
Viiu, G.-A. (2018). The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics. Journal of Informetrics, 12(2), 401-415.
Waltman, L., Calero-Medina, C., Kosten, J., Noyons, E. C. M., Tijssen, R. J. W., van Eck, N. J., van Leeuwen, T. N., van Raan, A. F. J., Visser, M. S., & Wouters, P. (2012). The Leiden ranking 2011/2012: Data collection, indicators, and interpretation. Journal of the American Society for information Science and Technology, 63(12), 2419-2432.
Waltman, L., & Schreiber, M. (2013). On the calculation of percentile-based bibliometric indicators. Journal of the American Society for information Science and Technology, 64, 372-379.
Waltman, L., & van Eck, N. J. (2012). The inconsistency of the h-index. Journal of the American Society for information Science and Technology, 63(2), 406-415.
Waltman, L., van Eck, N. J., van Leeuwen, T. N., Visser, M. S., & van Raan, A. F. J. (2011). Towards a new crown indicator: Some theoretical considerations. Journal of Informetrics, 5(1), 37-47.
Waltman, L., van Eck, N. J., & van Raan, A. F. J. (2012). Universality of citation distributions revisited. Journal of the American Society for information Science and Technology, 63(1), 72-77.
Wildgaard, L., Schneider, J. W., & Larsen, B. (2014). A rewiew of the characteristics of 108 author-level bibliometric indicators. Scientometrics, 101, 125-158.