Have a personal or library account? Click to login

A multi-viewpoint spectrum paradigm for inter-actor relationship analysis in non-social textual corpora: The case of the UN General Debate Corpus

Open Access
|Jun 2025

References

  1. Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery (LinkKDD '05) (pp. 36-43). Association for Computing Machinery. https://doi.org/10.1145/1134271.1134277
  2. Arias, S. B. (2022). Who securitizes? Climate change discourse in the United Nations. International Studies Quarterly, 66(2). https://doi.org/10.1093/isq/sqac020
  3. Baclawski, K., Bennett, M., Berg-Cross, G., Casanave, C., Fritzsche, D., Luciano, J., Schneider, T., Sharma, R., Singer, J., Sowa, J., Sriram, R. D., Westerinen, A., & Whitten, D. (2018). Ontology summit 2018 communiqué: Contexts in context. Applied Ontology, 13(3), 181-200. https://doi.org/10.3233/AO-180200
  4. Bailey, M. A., Strezhnev, A., & Voeten, E. (2017). Estimating dynamic state preferences from United Nations voting data. Journal of Conflict Resolution, 61(2), 430-456. https://doi.org/10.1177/0022002715595700
  5. Barbieri, K., Keshk, O. M. G., & Pollins, B. M. (2009). Trading data: Evaluating our assumptions and coding rules. Conflict Management and Peace Science., 26(5), 471-491. https://doi.org/10.1177/0738894209343887
  6. Baturo, A., Dasandi, N., & Mikhaylov, S. J. (2017). Understanding state preferences with text as data: Introducing the UN general debate corpus. Research and Politics, 4(2). https://doi.org/10.1177/2053168017712821
  7. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3, 993-1022.
  8. Chelotti, N., Dasandi, N., & Jankin Mikhaylov, S. (2022). Do intergovernmental organizations have a socialization effect on member state preferences? Evidence from the UN General Debate. International Studies Quarterly, 66(1). https://doi.org/10.1093/isq/sqab069
  9. Claude, I. L. (1966). Collective legitimization as a political function of the United Nations. International Organization, 20(3), 367-379. https://doi.org/10.1017/S0020818300012832
  10. Dasandi, N., Jankin, S., & Baturo, A. (2023). Words to unite nations: The complete UN General Debate Corpus, 1946-present [Project]. OSF. https://osf.io/z69fj
  11. Dieng, A. B., Ruiz, F. J. R., & Blei, D. M. (2019). The dynamic embedded topic model. arXiv. https://doi. org/10.48550/arXiv.1907.05545
  12. Doan, T. M., & Gulla, J. A. (2022). A Survey on Political Viewpoints Identification. Online Social Networks and Media, 30, 100208. https://doi.org/10.1016/j.osnem.2022.100208
  13. Dong, X., & Lian, Y. (2021). A review of social media-based public opinion analyses: Challenges and recommendations. Technology in Society, 67, 101724. https://doi.org/10.1016/j.techsoc.2021.101724
  14. Gangula, R. R. R., Duggenpudi, S. R., & Mamidi, R. (2019). Detecting political bias in news articles using headline attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (pp. 77-84). https://doi.org/10.18653/v1/w19-4809
  15. Garimella, K., De Francisci Morales, G., Gionis, A., & Mathioudakis, M. (2016). Quantifying controversy in social media. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (pp. 33-42). https://doi.org/10.1145/2835776.2835792
  16. Gentzkiow, M., & Shapiro, J. M. (2010). What drives media slant? Evidence from U.S. Daily Newspapers. Econometrica, 78(1), 35-71. https://doi.org/10.3982/ecta7195
  17. Gibler, D. M. (2008). International military alliances, 1648-2008. CQ Press.
  18. Gu, Y., Chen, T., Sun, Y., & Wang, B. (2017). Ideology detection for Twitter users via link analysis. In D. Lee, Y. R. Lin, N. Osgood, & R. Thomson (Eds.), Social, cultural, and behavioral modeling: SBP-BRiMS 2017 (Lecture Notes in Computer Science, Vol. 10354, pp. 262-268). Springer. https://doi.org/10.1007/978-3-319-60240-0_32
  19. Gurciullo, S., & Mikhaylov, S. J. (2017a). Topology analysis of international networks based on debates in the United Nations. arXiv. https://doi.org/10.48550/arXiv.1707.09491
  20. Gurciullo, S., & Mikhaylov, S. J. (2017b). Detecting policy preferences and dynamics in the UN general debate with neural word embeddings. In 2017 International Conference on the Frontiers and Advances in Data Science (FADS) (pp. 74-79). IEEE. https://doi.org/10.1109/FADS.2017.8253197
  21. Hecht, C. (2016). The shifting salience of democratic governance: Evidence from the United Nations General Assembly General Debates. Review of International Studies, 42(5), 915-938. https://doi.org/10.1017/S0260210516000073
  22. Høyland, B., Godbout, J. F., Lapponi, E., & Velldal, E. (2014). Predicting Party Affiliations from European Parliament Debates. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp.56–60). https://doi.org/10.3115/v1/w14-2516
  23. Iyyer, M., Enns, P., Boyd-Graber, J., & Resnik, P. (2014). Political ideology detection using recursive neural networks. In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (volume 1, pp. 1113-1122). https://doi.org/10.3115/v1/p14-1105
  24. Kentikelenis, A., & Voeten, E. (2021). Legitimacy challenges to the liberal world order: Evidence from United Nations speeches, 1970–2018. Review of International Organizations, 16(4), 721-754. https://doi.org/10.1007/S11558-020-09404-Y
  25. Kitchens, B., Johnson, S. L., & Gray, P. (2020). Understanding echo chambers and filter bubbles: The impact of social media on diversification and partisan shifts in news consumption. MIS Quarterly, 44(4). https://doi. org/10.25300/MISQ/2020/16371
  26. Kozareva, Z., & Hovy, E. (2010). Learning arguments and supertypes of semantic relations using recursive patterns. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, (pp.1482-1491).
  27. Lauderdale, B. E., & Clark, T. S. (2012). The Supreme Court’s many median justices. American Political Science Review, 106(4), 847-866. https://doi.org/10.1017/S0003055412000469
  28. Lin, W. H., Wilson, T., Wiebe, J., & Hauptmann, A. (2006). Which side are you on? Identifying perspectives at the document and sentence levels. In CoNLL 2006 - Proceedings of the 10th Conference on Computational Natural Language Learning (pp.109-116).
  29. Lotan, N., & Minkov, E. (2023). Social world knowledge: Modeling and applications. PLoS ONE, 18(7), e0283700. https://doi.org/10.1371/journal.pone.0283700
  30. Mitrani, M. (2017). The Discursive construction of the international community: Evidence from the United Nations General Assembly. KFG Working Paper Series, 78, 1-30. http://nbn-resolving.de/urn:nbn:de:0168-ssoar-51596-1
  31. Mitrani, M. (2023). In search of the bellwether: A text as data approach for assessing trend-making in international discourse [conference paper]. EISA Annual Conference, Potsdam, Germany.
  32. Paul, M. J., Zhai, C. X., & Girju, R. (2010). Summarizing contrastive viewpoints in opinionated text. In Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 66-76).
  33. Prati, R. C., & Said-Hung, E. (2019). Predicting the ideological orientation during the Spanish 24M elections in Twitter using machine learning. AI and Society, 34(3), 589-598. https://doi.org/10.1007/s00146-017-0761-0
  34. Preotiuc-Pietro, D., Hopkins, D. J., Liu, Y., & Ungar, L. (2017). Beyond binary labels: Political ideology prediction of Twitter users. In ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers, 1, pp.729-740). https://doi.org/10.18653/v1/P17-1068
  35. Quraishi, M., Fafalios, P., & Herder, E. (2018). Viewpoint discovery and understanding in social networks. In WebSci 2018 - Proceedings of the 10th ACM Conference on Web Science (pp.47-56). https://doi.org/10.1145/3201064.3201076
  36. Rao, A., & Spasojevic, N. (2016). Actionable and political text classification using word embeddings and LSTM. arXiv. http://arxiv.org/abs/1607.02501
  37. Ren, Z., Inel, O., Aroyo, L., & De Rijke, M. (2016). Time-aware multi-viewpoint summarization of multilingual social text streams. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (pp. 387-396). https://doi.org/10.1145/2983323.2983710
  38. Rheault, L., & Cochrane, C. (2020). Word embeddings for the analysis of ideological placement in parliamentary corpora. Political Analysis, 28(1), 112-133. https://doi.org/10.1017/pan.2019.26
  39. Sataloff, R. T., Johns, M. M., Kost, K. M., Schoenfeld, M., Eckhard, S., Patz, R., & van Meegdenburg, H. (2018). Discursive landscapes and unsupervised topic modeling in IR: A validation of text-as-data approaches through a new corpus of UN Security Council speeches on Afghanistan. arXiv. https://doi.org/10.48550/arXiv.1810.05572
  40. Shukla, D., & Unger, S. (2022). Sentiment analysis of international relations with Artificial Intelligence. Athens Journal of Sciences, 9(2), 91-106. https://doi.org/10.30958/ajs.9-2-1
  41. Sim, Y., Acree, B. D. L., Gross, J. H., & Smith, N. A. (2013). Measuring ideological proportions in political speeches. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 91-101).
  42. Simmons, B. A., & Shaffer, R. (2019). Globalization and border securitization in international discourse. SSRN Electronic Journal, 3480613. https://doi.org/10.2139/ssrn.3480613
  43. Singer, D., Bremer, S., & Stuckey, J. (1972). Capability Distribution, Uncertainty, and Major Power War, 18201965. In B. M. Russett (Ed.), Peace, War, and Numbers (pp.19-48). SAGE Publications Ltd.
  44. Thonet, T., Cabanac, G., Boughanem, M., & Pinel-Sauvagnat, K. (2016). VODUM: A topic model unifying viewpoint, topic and opinion discovery. In Proceedings of Advances in Information Retrieval: 38th European Conference on IR Research (pp. 533-545). Springer. https://doi.org/10.1007/978-3-319-30671-1_39
  45. Trabelsi, A., & Zaïane, O. R. (2019). Phaitv: A phrase author interaction topic viewpoint model for the summarization of reasons expressed by polarized stances. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 13, pp. 482-492). https://ojs.aaai.org/index.php/ICWSM/article/view/3246
  46. Vilares, D., & He, Y. (2017). Detecting perspectives in political debates. In EMNLP 2017-Conference on Empirical Methods in Natural Language Processing (pp. 1573-1582). Association for Computational Linguistics. https://doi.org/10.18653/v1/d17-1165
  47. Vliegenthart, R., Walgrave, S., & Zicha, B. (2013). How preferences, information and institutions interactively drive agenda-setting: Questions in the Belgian parliament, 1993-2000. European Journal of Political Research, 52(3), 390-418. https://doi.org/10.1111/J.1475-6765.2012.02070.X
  48. Watanabe, K., & Zhou, Y. (2020). Theory-driven analysis of large corpora: Semisupervised topic classification of the UN speeches. Social Science Computer Review, 40(2), 1-21. https://doi.org/10.1177/0894439320907027
  49. Wong, F. M. F., Tan, C. W., Sen, S., & Chiang, M. (2016). Quantifying political leaning from tweets, retweets, and retweeters. IEEE Transactions on Knowledge and Data Engineering, 28(8), 2158-2172. https://doi.org/10.1109/TKDE.2016.2553667
  50. Xiao, Z., Song, W., Xu, H., Ren, Z., & Sun, Y. (2020). TIMME: Twitter Ideology-detection via Multi-task Multirelational embedding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Vol.20, pp. 2258-2268). https://doi.org/10.1145/3394486.3403275
  51. Zhitomirsky-Geffet, M. (2019). Towards a diversified knowledge organization system: An open network of interlinked subsystems with multiple validity scopes. Journal of Documentation, 75(5), 1124-1138. https://doi.org/10.1108/JD-10-2018-0163
  52. Zhitomirsky-Geffet, M. (2022). Turning filter bubbles into bubblesphere with multi-viewpoint KOS and diverse similarity. In Proceedings of the Association for Information Science and Technology, 59(1), 533-538. https://doi.org/10.1002/pra2.665
  53. Zhitomirsky-Geffet, M., & Avidan, G. (2021). A new framework for systematic analysis and classification of inconsistencies in multi-viewpoint ontologies. Knowledge Organization, 48(5), 331-344. https://doi.org/10.5771/0943-7444-2021-5-331
  54. Zhitomirsky-Geffet, M., & Hajibayova, L. (2020). A new framework for ethical creation and evaluation of multiperspective knowledge organization systems. Journal of Documentation, 76(6), 1459-1471. https://doi.org/10.1108/JD-04-2020-0053/FULL/XML
  55. Zhou, D. X., Resnick, P., & Mei, Q. (2011). Classifying the political leaning of news articles and users from user votes. In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (vol. 5, No. 1, pp. 417-424). https://doi.org/10.1609/icwsm.v5i1.14108
  56. Zhou, Y., & Kurusu, K. (2021). How major powers diverge on global governance? Evidence from the United Nations General Debate. Kobe University Law Review, 54, 63-80. https://doi.org/10.24546/81013152
DOI: https://doi.org/10.2478/jdis-2025-0026 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 32 - 51
Submitted on: Dec 29, 2024
Accepted on: Apr 7, 2025
Published on: Jun 11, 2025
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Efrat Miller, Maayan Zhitomirsky-Geffet, Mor Mitrani, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.