Have a personal or library account? Click to login

Dynamic domain analysis for predicting concept drift in engineering AI-enabled software

Open Access
|May 2025

References

  1. ABCNews. (2015, November 12). Google’s driving cars learn caution around kids. ABC News. https://abcnews.go.com/Technology/googles-driving-cars-learn-caution-kids/story?id=34911071.
  2. Adams, J. N., van Zelst, S. J., Rose, T., & van der Aalst, W. M. (2023). Explainable concept drift in process mining. Information Systems, 114, 102177.
  3. Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., & Morales-Bueno, R. (2006). Early drift detection method. In Fourth international workshop on knowledge discovery from data streams, volume 6 (pp.77–86). Citeseer.
  4. Barzamini, H., Rahimi, M., Shahzad, M., & Alhoori, H. (2022). Improving generalizability of ML-enabled software through domain specification. In Proceedings of the 1st International Conference on AI Engineering: Software Engineering for AI (pp.181–192).
  5. Bechini, A., Bondielli, A., Ducange, P., Marcelloni, F., & Renda, A. (2021). Addressing event-driven concept drift in twitter stream: A stance detection application. IEEE Access, 9, 77758-77770.
  6. Benenson, R., Omran, M., Hosang, J., & Schiele, B. (2015). Ten years of pedestrian detection, what have we learned? In Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II 13 (pp. 613–627). Springer.
  7. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.
  8. Brunetti, A., Buongiorno, D., Trotta, G. F., & Bevilacqua, V. (2018). Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing, 300, 17–33.
  9. Cabral, D. R., & Barros, R. S. M. (2018). Concept drift detection based on fisher’s exact test. Information Sciences, 442, 220–234.
  10. Cao, J., Pang, Y., Xie, J., Khan, F. S., & Shao, L. (2021). From handcrafted to deep features for pedestrian detection: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9), 4913–4934.
  11. Costa, J., Silva, C., Antunes, M., & Ribeiro, B. (2014). Concept drift awareness in twitter streams. In 13th International Conference on Machine Learning and Applications (pp. 294–299). IEEE.
  12. Deshpande, L. A., & Narasingarao, M. (2019). Addressing social popularity in twitter data using drift detection technique. Journal of Engineering Science and Technology, 14(2), 922–934.
  13. Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2011). Pedestrian detection: An evaluation of the state of the art. IEEE transactions on pattern analysis and machine intelligence, 34(4), 743–761.
  14. Dries, A., & Rückert, U. (2009). Adaptive concept drift detection. Statistical analysis and data mining: The ASA Data Science Journal, 2(5-6), 311–327.
  15. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4), 1–37.
  16. Google Books. (2024). Google books ngram viewer. Retrieved October 9, 2024, from https://books.google.com/ngrams
  17. Halstead, B., Koh, Y. S., Riddle, P., Pechenizkiy, M., & Bifet, A. (2023). Combining diverse meta-features to accurately identify recurring concept drift in data streams. ACM Transactions on Knowledge Discovery from Data, 17(8), 1–36.
  18. Harel, M., Mannor, S., El-Yaniv, R., & Crammer, K. (2014). Concept drift detection through resampling. In International conference on machine learning (pp. 1009–1017). PMLR.
  19. Hasan, I., Liao, S., Li, J., Akram, S. U., & Shao, L. (2021). Generalizable pedestrian detection: The elephant in the room. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11328–11337).
  20. Hinder, F., Vaquet, V., & Hammer, B. (2024). One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: Detecting concept drift. Frontiers in Artificial Intelligence, 7, 1330257.
  21. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE transactions on pattern analysis and machine intelligence, 24(7), 881–892.
  22. Kelly, M. G., Hand, D. J., & Adams, N. M. (1999). The impact of changing populations on classifier performance. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 367–371). Association for Computing Machinery.
  23. Li, C.-T., Shan, M.-K., Jheng, S.-H., & Chou, K.-C. (2016). Exploiting concept drift to predict popularity of social multimedia in microblogs. Information Sciences, 339, 310–331.
  24. Lifna, C., & Vijayalakshmi, M. (2015). Identifying concept-drift in twitter streams. Procedia Computer Science, 45, 86–94.
  25. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117–2125).
  26. New York Times. (2018, March 20). Self-driving Uber car kills pedestrian in Arizona, where robots roam. The New York Times. https://www.nytimes.com/interactive/2018/03/20/us/self-driving-uber-pedestrian-killed.html
  27. Nishida, K., & Yamauchi, K. (2007). Detecting concept drift using statistical testing. In International conference on discovery science, (pp.264–269). Springer.
  28. Park, H. J. & Goel, A. (2021). Dynamic adjustment of concurrent neural networks within limited power thermal constraints in autonomous driving. In 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 879–884). IEEE.
  29. Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. arXiv.https://doi.org/10.48550/arXiv.1712.04621
  30. Rahutomo, F., Kitasuka, T., & Aritsugi, M. (2012). Semantic cosine similarity. In The 7th international student conference on advanced science and technology ICAST (vol.4, pp.1). University of Seoul South Korea.
  31. Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6),1137–1149.
  32. Salay, R. & Czarnecki, K. (2019). Improving ml safety with partial specifications. In Computer Safety, Reliability, and Security: SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku, Finland, September 10, 2019, Proceedings 38 (pp. 288–300). Springer.
  33. Shahzad, M. & Alhoori, H. (2022). Public reaction to scientific research via twitter sentiment prediction. Journal of Data and Information Science, 7(1), 97–124.
  34. Soares, E., Angelov, P., Filev, D., Costa, B., Castro, M., & Nageshrao, S. (2019). Explainable density-based approach for self-driving actions classification. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (pp. 469–474). IEEE.
  35. Srinivasan, K., Raman, K., Chen, J., Bendersky, M., & Najork, M. (2021). WIT: Wikipedia-based image text dataset for multimodal multilingual machine learning. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 2443–2449). Association for Computing Machinery. https://doi.org/10.1145/3404835.3463257
  36. Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Computer Science Department, Trinity College Dublin, 106(2), 58.
  37. Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering with background knowledge. In Proceedings of the 18th International Conference on Machine Learning (ICML ‘01)(pp. 577–584). Morgan Kaufmann Publishers Inc.
  38. Wang, H., & Abraham, Z. (2015). Concept drift detection for streaming data. In 2015 international joint conference on neural networks (IJCNN) (pp. 1–9). IEEE.
  39. Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C., Zhou, J., & Yang, H. (2022). OFA: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework. In International conference on machine learning (pp. 23318–23340). PMLR.
  40. Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Characterizing concept drift. Data Mining and Knowledge Discovery, 30(4), 964–994.
  41. Xiang, Q., Zi, L., Cong, X., & Wang, Y. (2023). Concept drift adaptation methods under the deep learning framework: A literature review. Applied Sciences, 13(11), 6515.
  42. Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1492–1500).
  43. Xu, L., Ding, X., Peng, H., Zhao, D., & Li, X. (2023). Adtcd: An adaptive anomaly detection approach toward concept drift in IoT. IEEE Internet of Things Journal, 10(18), 15931–15942.
  44. Zhang, Y., Kang, B., Hooi, B., Yan, S., & Feng, J. (2021). Deep long-tailed learning: A survey. arXiv. https://doi.org/10.48550/arXiv.2110.04596
DOI: https://doi.org/10.2478/jdis-2025-0020 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 124 - 151
Submitted on: Nov 15, 2024
Accepted on: Mar 11, 2025
Published on: May 7, 2025
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Murtuza Shahzad, Hamed Barzamini, Joseph Wilson, Hamed Alhoori, Mona Rahimi, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.