Have a personal or library account? Click to login
A New Citation Recommendation Strategy Based on Term Functions in Related Studies Section Cover

A New Citation Recommendation Strategy Based on Term Functions in Related Studies Section

By: Haihua Chen  
Open Access
|May 2021

References

  1. Ayala-Gomez, F., Daroczy, B., Benczur, A., Mathioudakis, M., & Gionis, A. (2018). Global citation recommendation using knowledge graphs. Journal of Intelligent and Fuzzy Systems, 34(5), 3089–3100. https://doi.org/10.3233/JIFS-169493.
  2. Beel, J., & Dinesh, S. (2017). Real-World Recommender Systems for Academia: The Pain and Gain in Building, Operating, and Researching them. In Proceedings of the ECIR’17 workshop on bibliometric-enhanced information retrieval (pp. 6–17).
  3. Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3615–3620.
  4. Bethard, S., & Jurafsky, D. (2010). Who should I cite: Learning literature search models from citation behavior. In Proceedings of the 19th ACM international conference on information and knowledge management (CIKM’10) (pp. 609–618). ACM.
  5. Bhagavatula, C., Feldman, S., Power, R., & Ammar, W. (2018). Content-based citation recommendation. arXiv preprint arXiv:1802.08301.
  6. Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.
  7. Caragea, C., Silvescu, A., Mitra, P., & Giles, C.L. (2013). Can’t see the forest for the trees?: A citation recommendation system. In Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries (JCDL’13) (pp. 111–114). ACM.
  8. Chakraborty, T., Modani, N., Narayanam, R., & Nagar, S. (2015). Discern: a diversified citation recommendation system for scientific queries. In Proceedings of the 31th international conference on data engineering (ICDE’15) (pp. 555–566). IEEE.
  9. Chen, C., Mayanglambam, S., Hsu, F., Lu, C., Lee, H., & Ho, J. (2012). Novelty paper recommendation using citation authority diffusion. In Proceedings of the international conference on technologies and applications of artificial intelligence (TAAI’11) (pp. 126–131). IEEE.
  10. Cheng, Q. (2015). Term Function Recognition of Academic Text. (Unpublished doctoral dissertation). Wuhan University, Wuhan, China.
  11. Ding, Y., Liu, X.Z., Guo, C., & Cronin, B. (2013). The distribution of references across texts: Some implications for citation analysis. Journal of Informetrics, 7(3), 583–592.
  12. Duma, D., & Klein, E. (2014). Citation resolution: A method for evaluating context-based citation recommendation systems. In Proceedings of the 52th annual meeting of the association for computational linguistics (ACL’14) (Vol. 2, pp. 358–363).
  13. Duma, D., Liakata, M., Clare, A., Ravenscroft, J., & Klein, E. (2016). Applying Core Scientific Concepts to Context-Based Citation Recommendation. In Proceedings of the 10th edition of the language resources and evaluation conference (LREC’16).
  14. Duma, D., Liakata, M., Clare, A., Ravenscroft, J., & Klein, E. (2016). Rhetorical Classification of Anchor Text for Citation Recommendation. D-Lib Magazine, 22(9/10).
  15. Duma, D. (2019). Contextual citation recommendation using scientific discourse annotation schemes (Doctoral dissertation). United Kingdom, Edinburgh: The University of Edinburgh.
  16. Ebesu, T., & Fang, Y. (2017). Neural citation network for context-aware citation recommendation. In Proceedings of the 40th International ACM SIGIR conference on research and development in information retrieval (SIGIR’17) (pp. 1093–1096). ACM.
  17. Gao, Z. (2016). Examining influences of publication dates on citation recommendation systems. In Proceedings of the 12th international conference on fuzzy systems and knowledge discovery (FSKD’15) (pp. 1400–1405). IEEE.
  18. Huang, W.Y., Wu, Z.H., Mitra, P., & Giles, C. (2014). RefSeer: Citation Recommendation System. In Proceedings of the 14th ACM/IEEE-CS joint conference on digital libraries (JCDL’14) (pp. 371–374). ACM
  19. He, J., Nie, J.Y., Lu, Y., & Zhao, W. (2012). Position-aligned translation model for citation recommendation. In Proceedings of the international symposium on string processing and information retrieval (pp. 251–263). Springer, Berlin, Heidelberg.
  20. He, Q., Kifer, D., Pei, J., Mitra, P., & Giles, C. (2011). Citation recommendation without author supervision. In Proceedings of the fourth ACM international conference on web search and data mining (WSDM’11) (pp. 755–764). ACM.
  21. He, Q., Pei, J., Kifer, D., Mitra, P., & Giles, C. (2010). Context-aware citation recommendation. In Proceedings of the 19th international conference on world wide web (WWW’10) (pp. 421–430). ACM.
  22. Huang, W.Y., Wu, Z.H., Chen, L., Mitra, P., & Giles, C. (2015). A Neural Probabilistic Model for Context Based Citation Recommendation. In Proceedings of the 29th association for the advancement of artificial intelligence (AAAI’2015) (pp. 2404–2410).
  23. Jeong, C., Jang, S., Shin, H., Park, E., & Choi, S. (2019). A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks. arXiv preprint arXiv:1903.06464.
  24. Jiang, Z.R., Liu, X.Z., & Gao, L.C. (2014). Dynamic topic/citation influence modeling for chronological citation recommendation. In Proceedings of the 5th international workshop on web-scale knowledge representation retrieval & reasoning (pp. 15–18). ACM.
  25. Jiang, Z. (2015). Chronological scientific information recommendation via supervised dynamic topic modeling. In Proceedings of the 8th ACM international conference on web search and data mining (WSDM’15) (pp. 453–458). ACM.
  26. Jiang, Z.R., Liu, X.Z., & Gao, L.C. (2015). Chronological citation recommendation with information-need shifting. In Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM’15) (pp. 1291–1300). ACM.
  27. Jiang, Z.R., Yin, Y., Gao, L.C., Lu, Y., & Liu, X.Z. (2018). Cross-Language Citation Recommendation via Hierarchical Representation Learning on Heterogeneous Graph. In Proceedings of the 41th international ACM SIGIR conference on research and development in information retrieval(SIGIR’18). ACM.
  28. Jia, H.F., & Saule, E. (2018). Towards Finding Non-obvious Papers: An Analysis of Citation Recommender Systems. arXiv preprint arXiv:1812.11252.
  29. Kates-Harbeck, J., & Haggblade, M. (2013). A two-stage citation recommendation system. Stanford University.
  30. Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, U. (2012). Direction awareness in citation recommendation. In Proceedings of the international workshop on ranking in databases (DBRank’12) in conjunction with VLDB’12.
  31. Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, Ü. (2013). Result diversification in automatic citation recommendation. In Proceedings of the iConference workshop on computational scientometrics: theory and applications (pp. 1–4).
  32. Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, Ü. (2015). Diversifying citation recommendations. ACM Transactions on Intelligent Systems and Technology, 5(4), 55.
  33. Liu, Y.N., Yan, R., & Yan, H.F. (2013). Guess what you will cite: Personalized citation recommendation based on users’ preference. In Asia information retrieval symposium (pp. 428–439). Springer, Berlin, Heidelberg.
  34. Li, M., Wang, M., & Wang, C.G. (2010). Research on SVM classification performance in rolling bearing diagnosis. In Proceeding of the international conference on intelligent computation technology and automation (ICICTA’10) (pp. 132–135). IEEE.
  35. Livne, A., Gokuladas, V., Teevan, J., Dumais, S., & Adar, E. (2014). CiteSight: supporting contextual citation recommendation using differential search. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (SIGIR’14) (pp. 807–816). ACM.
  36. Li, X., Cheng, Q., & Lu, W. (2017). “CS-LAS: A Scientific Literature Retrieval and Analysis System Based on Term Function Recognition (TFR).” In Proceedings of the 16th international conference of the international society for scientometrics and informetrics (ISSI’17).
  37. Lu, Y., He, J., Shan, D.D., & Yan, H.F. (2011). Recommending citations with translation model. In Proceedings of the 20th ACM international conference on information and knowledge management (CIKM’11) (pp. 2017–2020). ACM.
  38. Luong, M., Nguyen, T., & Kan, M.(2012). Logical structure recovery in scholarly articles with rich document features. In multimedia storage and retrieval innovations for digital library systems (pp. 270–292). IGI Global.
  39. McNee, S., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S., Rashid, A., Konstan, J., & Riedl, J. (2002). On the recommending of citations for research papers. In Proceedings of the 2002 ACM conference on computer supported cooperative work (pp. 116–125). ACM.
  40. Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.
  41. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
  42. Ren, X., Liu, J.L., Yu, X., Khandelwal, U., Gu, Q.Q., Wang, L.D., & Han, J.W. (2014). Cluscite: Effective citation recommendation by information network-based clustering. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’2014) (pp. 821–830). ACM.
  43. Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and beyond. Foundations and Trends® in Information Retrieval, 3(4), 333–389.
  44. Rokach, L., Mitra, P., Kataria, S., Huang, W., & Giles, C. (2013). A Supervised Learning Method for ContextAware Citation Recommendation in a Large Corpus. Proceedings of the Large-Scale and Distributed Systems for Information Retrieval Workshop (LSDS-IR) (pp. 17–22).
  45. Sesagiri Raamkumar, A., Foo, S., & Pang, N. (2015). Rec4LRW–Scientific Paper Recommender System for Literature Review and Writing. In Proceedings of the 6th international conference on applications of digital information and web technologies (pp. 106–119).
  46. Sesagiri Raamkumar, A., Foo, S., & Pang, N. (2016). What papers should I cite from my reading list? User evaluation of a manuscript preparatory assistive task. In Proceedings of the joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL’16) (pp. 51–62).
  47. Son, J., & Kim, S. (2018). Academic paper recommender system using multilevel simultaneous citation networks. Decision Support Systems, 105, 24–33.
  48. Strohman, T., Croft, W., & Jensen, D. (2007). Recommending citations for academic papers. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR’07) (pp. 705–706). ACM.
  49. Tang, J., & Zhang, J. (2009). A discriminative approach to topic-based citation recommendation. In Pacific-Asia Conference on knowledge discovery and data mining (PAKDD’09) (pp. 572–579). Springer, Berlin, Heidelberg.
  50. Tang, X.W., Wan, X.J., & Zhang, X. (2014). Cross-language context-aware citation recommendation in scientific articles. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (SIGIR’14) (pp. 817–826). ACM.
  51. Viera, A., & Garrett, J. (2005). Understanding interobserver agreement: the kappa statistic. Fam Med, 37(5), 360–363.
  52. Wu, H., Hua, Y., Li, B., & Pei, Y.J. (2012). Enhancing citation recommendation with various evidences. In Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’12) (pp. 1160–1165). IEEE.
  53. Yang, L.B., Zhang, Z.Q., Cai, X.Y., & Dai, T. (2019). Attention-Based Personalized Encoder-Decoder Model for Local Citation Recommendation. Computational Intelligence and Neuroscience, 2019.
  54. Yang, L.B., Zhang, Z.Q., Cai, X.Y., & Guo, L.T. (2019). Citation recommendation as edge prediction in heterogeneous bibliographic network: A network representation approach. IEEE Access, 7, 23232–23239.
  55. Zarrinkalam, F., & Kahani, M. (2012). A multi-criteria hybrid citation recommendation system based on linked data. In Proceedings of the 2nd International eConference on Computer and Knowledge Engineering (ICCKE’12) (pp. 283–288). IEEE.
  56. Zarrinkalam, F., & Kahani, M. (2013). SemCiR: A citation recommendation system based on a novel semantic distance measure. Program, 47(1), 92–112.
  57. Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 5.
  58. Zhou, S.P. (2010). ActiveCite: An Interactive System for Automatic Citation Suggestion. National University of Singapore.
DOI: https://doi.org/10.2478/jdis-2021-0022 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 75 - 98
Submitted on: Nov 3, 2020
Accepted on: Apr 7, 2021
Published on: May 9, 2021
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Haihua Chen, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.