References
- Ayala-Gomez, F., Daroczy, B., Benczur, A., Mathioudakis, M., & Gionis, A. (2018). Global citation recommendation using knowledge graphs. Journal of Intelligent and Fuzzy Systems, 34(5), 3089–3100. https://doi.org/10.3233/JIFS-169493.
- Beel, J., & Dinesh, S. (2017). Real-World Recommender Systems for Academia: The Pain and Gain in Building, Operating, and Researching them. In Proceedings of the ECIR’17 workshop on bibliometric-enhanced information retrieval (pp. 6–17).
- Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3615–3620.
- Bethard, S., & Jurafsky, D. (2010). Who should I cite: Learning literature search models from citation behavior. In Proceedings of the 19th ACM international conference on information and knowledge management (CIKM’10) (pp. 609–618). ACM.
- Bhagavatula, C., Feldman, S., Power, R., & Ammar, W. (2018). Content-based citation recommendation. arXiv preprint arXiv:1802.08301.
- Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.
- Caragea, C., Silvescu, A., Mitra, P., & Giles, C.L. (2013). Can’t see the forest for the trees?: A citation recommendation system. In Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries (JCDL’13) (pp. 111–114). ACM.
- Chakraborty, T., Modani, N., Narayanam, R., & Nagar, S. (2015). Discern: a diversified citation recommendation system for scientific queries. In Proceedings of the 31th international conference on data engineering (ICDE’15) (pp. 555–566). IEEE.
- Chen, C., Mayanglambam, S., Hsu, F., Lu, C., Lee, H., & Ho, J. (2012). Novelty paper recommendation using citation authority diffusion. In Proceedings of the international conference on technologies and applications of artificial intelligence (TAAI’11) (pp. 126–131). IEEE.
- Cheng, Q. (2015). Term Function Recognition of Academic Text. (Unpublished doctoral dissertation). Wuhan University, Wuhan, China.
- Ding, Y., Liu, X.Z., Guo, C., & Cronin, B. (2013). The distribution of references across texts: Some implications for citation analysis. Journal of Informetrics, 7(3), 583–592.
- Duma, D., & Klein, E. (2014). Citation resolution: A method for evaluating context-based citation recommendation systems. In Proceedings of the 52th annual meeting of the association for computational linguistics (ACL’14) (Vol. 2, pp. 358–363).
- Duma, D., Liakata, M., Clare, A., Ravenscroft, J., & Klein, E. (2016). Applying Core Scientific Concepts to Context-Based Citation Recommendation. In Proceedings of the 10th edition of the language resources and evaluation conference (LREC’16).
- Duma, D., Liakata, M., Clare, A., Ravenscroft, J., & Klein, E. (2016). Rhetorical Classification of Anchor Text for Citation Recommendation. D-Lib Magazine, 22(9/10).
- Duma, D. (2019). Contextual citation recommendation using scientific discourse annotation schemes (Doctoral dissertation). United Kingdom, Edinburgh: The University of Edinburgh.
- Ebesu, T., & Fang, Y. (2017). Neural citation network for context-aware citation recommendation. In Proceedings of the 40th International ACM SIGIR conference on research and development in information retrieval (SIGIR’17) (pp. 1093–1096). ACM.
- Gao, Z. (2016). Examining influences of publication dates on citation recommendation systems. In Proceedings of the 12th international conference on fuzzy systems and knowledge discovery (FSKD’15) (pp. 1400–1405). IEEE.
- Huang, W.Y., Wu, Z.H., Mitra, P., & Giles, C. (2014). RefSeer: Citation Recommendation System. In Proceedings of the 14th ACM/IEEE-CS joint conference on digital libraries (JCDL’14) (pp. 371–374). ACM
- He, J., Nie, J.Y., Lu, Y., & Zhao, W. (2012). Position-aligned translation model for citation recommendation. In Proceedings of the international symposium on string processing and information retrieval (pp. 251–263). Springer, Berlin, Heidelberg.
- He, Q., Kifer, D., Pei, J., Mitra, P., & Giles, C. (2011). Citation recommendation without author supervision. In Proceedings of the fourth ACM international conference on web search and data mining (WSDM’11) (pp. 755–764). ACM.
- He, Q., Pei, J., Kifer, D., Mitra, P., & Giles, C. (2010). Context-aware citation recommendation. In Proceedings of the 19th international conference on world wide web (WWW’10) (pp. 421–430). ACM.
- Huang, W.Y., Wu, Z.H., Chen, L., Mitra, P., & Giles, C. (2015). A Neural Probabilistic Model for Context Based Citation Recommendation. In Proceedings of the 29th association for the advancement of artificial intelligence (AAAI’2015) (pp. 2404–2410).
- Jeong, C., Jang, S., Shin, H., Park, E., & Choi, S. (2019). A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks. arXiv preprint arXiv:1903.06464.
- Jiang, Z.R., Liu, X.Z., & Gao, L.C. (2014). Dynamic topic/citation influence modeling for chronological citation recommendation. In Proceedings of the 5th international workshop on web-scale knowledge representation retrieval & reasoning (pp. 15–18). ACM.
- Jiang, Z. (2015). Chronological scientific information recommendation via supervised dynamic topic modeling. In Proceedings of the 8th ACM international conference on web search and data mining (WSDM’15) (pp. 453–458). ACM.
- Jiang, Z.R., Liu, X.Z., & Gao, L.C. (2015). Chronological citation recommendation with information-need shifting. In Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM’15) (pp. 1291–1300). ACM.
- Jiang, Z.R., Yin, Y., Gao, L.C., Lu, Y., & Liu, X.Z. (2018). Cross-Language Citation Recommendation via Hierarchical Representation Learning on Heterogeneous Graph. In Proceedings of the 41th international ACM SIGIR conference on research and development in information retrieval(SIGIR’18). ACM.
- Jia, H.F., & Saule, E. (2018). Towards Finding Non-obvious Papers: An Analysis of Citation Recommender Systems. arXiv preprint arXiv:1812.11252.
- Kates-Harbeck, J., & Haggblade, M. (2013). A two-stage citation recommendation system. Stanford University.
- Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, U. (2012). Direction awareness in citation recommendation. In Proceedings of the international workshop on ranking in databases (DBRank’12) in conjunction with VLDB’12.
- Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, Ü. (2013). Result diversification in automatic citation recommendation. In Proceedings of the iConference workshop on computational scientometrics: theory and applications (pp. 1–4).
- Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, Ü. (2015). Diversifying citation recommendations. ACM Transactions on Intelligent Systems and Technology, 5(4), 55.
- Liu, Y.N., Yan, R., & Yan, H.F. (2013). Guess what you will cite: Personalized citation recommendation based on users’ preference. In Asia information retrieval symposium (pp. 428–439). Springer, Berlin, Heidelberg.
- Li, M., Wang, M., & Wang, C.G. (2010). Research on SVM classification performance in rolling bearing diagnosis. In Proceeding of the international conference on intelligent computation technology and automation (ICICTA’10) (pp. 132–135). IEEE.
- Livne, A., Gokuladas, V., Teevan, J., Dumais, S., & Adar, E. (2014). CiteSight: supporting contextual citation recommendation using differential search. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (SIGIR’14) (pp. 807–816). ACM.
- Li, X., Cheng, Q., & Lu, W. (2017). “CS-LAS: A Scientific Literature Retrieval and Analysis System Based on Term Function Recognition (TFR).” In Proceedings of the 16th international conference of the international society for scientometrics and informetrics (ISSI’17).
- Lu, Y., He, J., Shan, D.D., & Yan, H.F. (2011). Recommending citations with translation model. In Proceedings of the 20th ACM international conference on information and knowledge management (CIKM’11) (pp. 2017–2020). ACM.
- Luong, M., Nguyen, T., & Kan, M.(2012). Logical structure recovery in scholarly articles with rich document features. In multimedia storage and retrieval innovations for digital library systems (pp. 270–292). IGI Global.
- McNee, S., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S., Rashid, A., Konstan, J., & Riedl, J. (2002). On the recommending of citations for research papers. In Proceedings of the 2002 ACM conference on computer supported cooperative work (pp. 116–125). ACM.
- Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Ren, X., Liu, J.L., Yu, X., Khandelwal, U., Gu, Q.Q., Wang, L.D., & Han, J.W. (2014). Cluscite: Effective citation recommendation by information network-based clustering. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’2014) (pp. 821–830). ACM.
- Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and beyond. Foundations and Trends® in Information Retrieval, 3(4), 333–389.
- Rokach, L., Mitra, P., Kataria, S., Huang, W., & Giles, C. (2013). A Supervised Learning Method for ContextAware Citation Recommendation in a Large Corpus. Proceedings of the Large-Scale and Distributed Systems for Information Retrieval Workshop (LSDS-IR) (pp. 17–22).
- Sesagiri Raamkumar, A., Foo, S., & Pang, N. (2015). Rec4LRW–Scientific Paper Recommender System for Literature Review and Writing. In Proceedings of the 6th international conference on applications of digital information and web technologies (pp. 106–119).
- Sesagiri Raamkumar, A., Foo, S., & Pang, N. (2016). What papers should I cite from my reading list? User evaluation of a manuscript preparatory assistive task. In Proceedings of the joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL’16) (pp. 51–62).
- Son, J., & Kim, S. (2018). Academic paper recommender system using multilevel simultaneous citation networks. Decision Support Systems, 105, 24–33.
- Strohman, T., Croft, W., & Jensen, D. (2007). Recommending citations for academic papers. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR’07) (pp. 705–706). ACM.
- Tang, J., & Zhang, J. (2009). A discriminative approach to topic-based citation recommendation. In Pacific-Asia Conference on knowledge discovery and data mining (PAKDD’09) (pp. 572–579). Springer, Berlin, Heidelberg.
- Tang, X.W., Wan, X.J., & Zhang, X. (2014). Cross-language context-aware citation recommendation in scientific articles. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (SIGIR’14) (pp. 817–826). ACM.
- Viera, A., & Garrett, J. (2005). Understanding interobserver agreement: the kappa statistic. Fam Med, 37(5), 360–363.
- Wu, H., Hua, Y., Li, B., & Pei, Y.J. (2012). Enhancing citation recommendation with various evidences. In Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’12) (pp. 1160–1165). IEEE.
- Yang, L.B., Zhang, Z.Q., Cai, X.Y., & Dai, T. (2019). Attention-Based Personalized Encoder-Decoder Model for Local Citation Recommendation. Computational Intelligence and Neuroscience, 2019.
- Yang, L.B., Zhang, Z.Q., Cai, X.Y., & Guo, L.T. (2019). Citation recommendation as edge prediction in heterogeneous bibliographic network: A network representation approach. IEEE Access, 7, 23232–23239.
- Zarrinkalam, F., & Kahani, M. (2012). A multi-criteria hybrid citation recommendation system based on linked data. In Proceedings of the 2nd International eConference on Computer and Knowledge Engineering (ICCKE’12) (pp. 283–288). IEEE.
- Zarrinkalam, F., & Kahani, M. (2013). SemCiR: A citation recommendation system based on a novel semantic distance measure. Program, 47(1), 92–112.
- Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 5.
- Zhou, S.P. (2010). ActiveCite: An Interactive System for Automatic Citation Suggestion. National University of Singapore.