References
- Augenstein, I., Das, M., Riedel, S., Vikraman, L., & McCallum, A. (2017). Semeval 2017 task 10: Scienceie-extracting keyphrases and relations from scientific publications. ArXiv Preprint ArXiv:1704.02853.
- Barker, K., & Cornacchia, N. (2000). Using noun phrase heads to extract document keyphrases. Conference of the Canadian Society for Computational Studies of Intelligence, 40–52.
- Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 153–160.
- Berend, G. (2011). Opinion expression mining by exploiting keyphrase extraction. In Proceedings of the 5th International Joint Conference on Natural Language Processing, 1162–1170, Chiang Mai, Thailand.
- Bougouin, A., Boudin, F., & Daille, B. (2013). Topicrank: Graph-based topic ranking for keyphrase extraction. In Proceedings of International Joint Conference on Natural Language, 543–551, Nagoya, Japan.
- Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., & Jatowt, A. (2018). A text feature based automatic keyword extraction method for single documents. European Conference on Information Retrieval, 684–691.
- Caragea, C., Bulgarov, F.A., Godea, A., & Gollapalli, S.D. (2014). Citation-enhanced keyphrase extraction from research papers: A supervised approach. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1435–1446.
- Carpena, P., Bernaola-Galván, P., Hackenberg, M., Coronado, A., & Oliver, J. (2009). Level statistics of words: Finding keywords in literary texts and symbolic sequences. Physical Review E, 79(3), 035102.
- Chien, L.F. (1997). PAT-tree-based keyword extraction for Chinese information retrieval. In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 50–58.
- Cohen, J.D. (1995). Highlights: Language-and domain-independent automatic indexing terms for abstracting. Journal of the American Society for Information Science, 46(3), 162–174.
- Dai, A.M., & Le, Q.V. (2015). Semi-supervised sequence learning. Advances in Neural Information Processing Systems, 3079–3087.
- Danesh, S., Sumner, T., & Martin, J.H. (2015). Sgrank: Combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction. Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics, 117–126.
- Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
- Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11(Feb), 625–660.
- Erkan, G., & Radev, D.R. (2004). Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 22, 457–479.
- Frank, E., Paynter, G., Witten, I., Gutwin, C., & Nevill-Manning, C. (1999). Domain-Specific Keyphrase Extraction. In Proceeding of 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 668–673.
- Giorgi, J.M., & Bader, G.D. (2018). Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics, 34(23), 4087–4094.
- Grineva, M., Grinev, M., & Lizorkin, D. (2009). Extracting key terms from noisy and multitheme documents. In Proceedings of the 18th International Conference on World Wide Web, 661–670.
- Habibi, M., Weber, L., Neves, M., Wiegandt, D.L., & Leser, U. (2017). Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics, 33(14), i37–i48.
- Hasan, K.S., & Ng, V. (2014). Automatic keyphrase extraction: A survey of the state of the art. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1262–1273. https://doi.org/10.3115/v1/P14-1119
- Hinton, G.E., Osindero, S., & Teh, Y.W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. ArXiv:1801.06146 [Cs, Stat]. http://arxiv.org/abs/1801.06146
- Hulth, A. (2003). Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language, 216–223.
- Hulth, A., Karlgren, J., Jonsson, A., Boström, H., & Asker, L. (2001). Automatic keyword extraction using domain knowledge. International Conference on Intelligent Text Processing and Computational Linguistics, 472–482.
- Hulth, A., & Megyesi, B.B. (2006). A study on automatically extracted keywords in text categorization. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, 537–544.
- Jones, S., & Staveley, M.S. (1999). Phrasier: A system for interactive document retrieval using keyphrases. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 160–167.
- Kelleher, D., & Luz, S. (2005). Automatic hypertext keyphrase detection. IJCAI, 5, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 1608–1609.
- Kim, S.N., & Kan, M.Y. (2009). Re-examining automatic keyphrase extraction approaches in scientific articles. In Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications, 9–16.
- Kim, S.N., Medelyan, O., Kan, M.Y., & Baldwin, T. (2010). Semeval-2010 task 5: Automatic keyphrase extraction from scientific articles. In Proceedings of the 5th International Workshop on Semantic Evaluation, 21–26.
- Le, T.T.N., Le Nguyen, M., & Shimazu, A. (2016). Unsupervised keyphrase extraction: Introducing new kinds of words to keyphrases. Australasian Joint Conference on Artificial Intelligence, 665–671.
- Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., & Kang, J. (2019). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, btz682. https://doi.org/10.1093/bioinformatics/btz682
- Liu, Z.Y., Huang, W.Y., Zheng, Y.B., & Sun, M.S. (2010). Automatic keyphrase extraction via topic decomposition. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, 366–376.
- Liu, Z.Y., Li, P., Zheng, Y.B., & Sun, M.S. (2009). Clustering to find exemplar terms for keyphrase extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1, 257–266.
- Luhn, H.P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM Journal of Research and Development, 1(4), 309–317.
- Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single document using word co-occurrence statistical information. International Journal on Artificial Intelligence Tools, 13(01), 157–169.
- Medelyan, O., Frank, E., & Witten, I.H. (2009). Human-competitive tagging using automatic keyphrase extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3, 1318–1327.
- Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 404–411.
- Papagiannopoulou, E., & Tsoumakas, G. (2019). A review of keyphrase extraction. ArXiv:1905. 05044 [Cs]. http://arxiv.org/abs/1905.05044
- Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. https://doi.org/10.18653/v1/N18-1202
- Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding with unsupervised learning. Technical Report, OpenAI.
- Sahrawat, D., Mahata, D., Kulkarni, M., Zhang, H., Gosangi, R., Stent, A., Sharma, A., Kumar, Y., Shah, R.R., & Zimmermann, R. (2019). Keyphrase Extraction from Scholarly Articles as Sequence Labeling using Contextualized Embeddings. ArXiv Preprint ArXiv:1910.08840.
- Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513–523.
- Salton, G., Yang, C.S., & Yu, C.T. (1975). A theory of term importance in automatic text analysis. Journal of the American Society for Information Science, 26(1), 33–44.
- Tomokiyo, T., & Hurst, M. (2003). A language model approach to keyphrase extraction. In Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, 33–40.
- Turney, P.D. (2000). Learning algorithms for keyphrase extraction. Information Retrieval, 2(4), 303–336.
- Turney, P.D. (2002). Learning to extract keyphrases from text. ArXiv Preprint Cs/0212013.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 5998–6008.
- Wan, X., & Xiao, J. (2008). Single document keyphrase extraction using neighborhood knowledge. AAAI, 8, 855–860.
- Wang, M., Zhao, B., & Huang, Y. (2016). Ptr: Phrase-based topical ranking for automatic key-phrase extraction in scientific publications. International Conference on Neural Information Processing, 120–128.
- Wang, X., Zhang, Y., Ren, X., Zhang, Y.H., Zitnik, M., Shang, J.B., Langlotz, C., & Han, J.W. (2019). Cross-type biomedical named entity recognition with deep multi-task learning. Bioinformatics, 35(10), 1745–1752.
- Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., & Nevill-Manning, C.G. (2005). Kea: Practical automated keyphrase extraction. In Design and Usability of Digital Libraries: Case Studies in the Asia Pacific (pp. 129–152). IGI global.
- Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., & Macherey, K. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. ArXiv Preprint ArXiv:1609.08144.
- Zhang C.Z., Wang H.L., Liu Y., Wu D., Liao Y., & Wang B. (2008). Automatic keyword extraction from documents using conditional random fields. Journal of Computational Information Systems, 4(3), 1169–1180.
- Zhang, Q., Wang, Y., Gong, Y., & Huang, X.J. (2016). Keyphrase extraction using deep recurrent neural networks on twitter. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 836–845.
- Zhang, Y., Zincir-Heywood, N., & Milios, E. (2004). World wide web site summarization. Web Intelligence and Agent Systems: An International Journal, 2(1), 39–53.
- Zhao, W.X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.P., & Li, X. (2011). Topical keyphrase extraction from twitter. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, 379–388.
- Li, L.S., Dang, Y.Z., Zhang, J., & Li, D. (2013). Term extraction in the automotive field based on conditional random fields. Journal of Dalian University of Technology, 53(2), 267–272.
- Li, S.J., Wang, H.F., Yu, S.W., & Xin, C.S. (2004). Application research of maximum entropy model for keyword automatic indexing. Chinese Journal of Computers, 27(9), 1192–1197.