Have a personal or library account? Click to login
Automatic Keyphrase Extraction from Scientific Chinese Medical Abstracts Based on Character-Level Sequence Labeling Cover

Automatic Keyphrase Extraction from Scientific Chinese Medical Abstracts Based on Character-Level Sequence Labeling

Open Access
|Mar 2021

References

  1. Augenstein, I., Das, M., Riedel, S., Vikraman, L., & McCallum, A. (2017). Semeval 2017 task 10: Scienceie-extracting keyphrases and relations from scientific publications. ArXiv Preprint ArXiv:1704.02853.
  2. Barker, K., & Cornacchia, N. (2000). Using noun phrase heads to extract document keyphrases. Conference of the Canadian Society for Computational Studies of Intelligence, 40–52.
  3. Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 153–160.
  4. Berend, G. (2011). Opinion expression mining by exploiting keyphrase extraction. In Proceedings of the 5th International Joint Conference on Natural Language Processing, 1162–1170, Chiang Mai, Thailand.
  5. Bougouin, A., Boudin, F., & Daille, B. (2013). Topicrank: Graph-based topic ranking for keyphrase extraction. In Proceedings of International Joint Conference on Natural Language, 543–551, Nagoya, Japan.
  6. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., & Jatowt, A. (2018). A text feature based automatic keyword extraction method for single documents. European Conference on Information Retrieval, 684–691.
  7. Caragea, C., Bulgarov, F.A., Godea, A., & Gollapalli, S.D. (2014). Citation-enhanced keyphrase extraction from research papers: A supervised approach. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1435–1446.
  8. Carpena, P., Bernaola-Galván, P., Hackenberg, M., Coronado, A., & Oliver, J. (2009). Level statistics of words: Finding keywords in literary texts and symbolic sequences. Physical Review E, 79(3), 035102.
  9. Chien, L.F. (1997). PAT-tree-based keyword extraction for Chinese information retrieval. In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 50–58.
  10. Cohen, J.D. (1995). Highlights: Language-and domain-independent automatic indexing terms for abstracting. Journal of the American Society for Information Science, 46(3), 162–174.
  11. Dai, A.M., & Le, Q.V. (2015). Semi-supervised sequence learning. Advances in Neural Information Processing Systems, 3079–3087.
  12. Danesh, S., Sumner, T., & Martin, J.H. (2015). Sgrank: Combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction. Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics, 117–126.
  13. Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
  14. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11(Feb), 625–660.
  15. Erkan, G., & Radev, D.R. (2004). Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 22, 457–479.
  16. Frank, E., Paynter, G., Witten, I., Gutwin, C., & Nevill-Manning, C. (1999). Domain-Specific Keyphrase Extraction. In Proceeding of 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 668–673.
  17. Giorgi, J.M., & Bader, G.D. (2018). Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics, 34(23), 4087–4094.
  18. Grineva, M., Grinev, M., & Lizorkin, D. (2009). Extracting key terms from noisy and multitheme documents. In Proceedings of the 18th International Conference on World Wide Web, 661–670.
  19. Habibi, M., Weber, L., Neves, M., Wiegandt, D.L., & Leser, U. (2017). Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics, 33(14), i37–i48.
  20. Hasan, K.S., & Ng, V. (2014). Automatic keyphrase extraction: A survey of the state of the art. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1262–1273. https://doi.org/10.3115/v1/P14-1119
  21. Hinton, G.E., Osindero, S., & Teh, Y.W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527
  22. Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. ArXiv:1801.06146 [Cs, Stat]. http://arxiv.org/abs/1801.06146
  23. Hulth, A. (2003). Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language, 216–223.
  24. Hulth, A., Karlgren, J., Jonsson, A., Boström, H., & Asker, L. (2001). Automatic keyword extraction using domain knowledge. International Conference on Intelligent Text Processing and Computational Linguistics, 472–482.
  25. Hulth, A., & Megyesi, B.B. (2006). A study on automatically extracted keywords in text categorization. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, 537–544.
  26. Jones, S., & Staveley, M.S. (1999). Phrasier: A system for interactive document retrieval using keyphrases. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 160–167.
  27. Kelleher, D., & Luz, S. (2005). Automatic hypertext keyphrase detection. IJCAI, 5, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 1608–1609.
  28. Kim, S.N., & Kan, M.Y. (2009). Re-examining automatic keyphrase extraction approaches in scientific articles. In Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications, 9–16.
  29. Kim, S.N., Medelyan, O., Kan, M.Y., & Baldwin, T. (2010). Semeval-2010 task 5: Automatic keyphrase extraction from scientific articles. In Proceedings of the 5th International Workshop on Semantic Evaluation, 21–26.
  30. Le, T.T.N., Le Nguyen, M., & Shimazu, A. (2016). Unsupervised keyphrase extraction: Introducing new kinds of words to keyphrases. Australasian Joint Conference on Artificial Intelligence, 665–671.
  31. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., & Kang, J. (2019). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, btz682. https://doi.org/10.1093/bioinformatics/btz682
  32. Liu, Z.Y., Huang, W.Y., Zheng, Y.B., & Sun, M.S. (2010). Automatic keyphrase extraction via topic decomposition. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, 366–376.
  33. Liu, Z.Y., Li, P., Zheng, Y.B., & Sun, M.S. (2009). Clustering to find exemplar terms for keyphrase extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1, 257–266.
  34. Luhn, H.P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM Journal of Research and Development, 1(4), 309–317.
  35. Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single document using word co-occurrence statistical information. International Journal on Artificial Intelligence Tools, 13(01), 157–169.
  36. Medelyan, O., Frank, E., & Witten, I.H. (2009). Human-competitive tagging using automatic keyphrase extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3, 1318–1327.
  37. Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 404–411.
  38. Papagiannopoulou, E., & Tsoumakas, G. (2019). A review of keyphrase extraction. ArXiv:1905. 05044 [Cs]. http://arxiv.org/abs/1905.05044
  39. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. https://doi.org/10.18653/v1/N18-1202
  40. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding with unsupervised learning. Technical Report, OpenAI.
  41. Sahrawat, D., Mahata, D., Kulkarni, M., Zhang, H., Gosangi, R., Stent, A., Sharma, A., Kumar, Y., Shah, R.R., & Zimmermann, R. (2019). Keyphrase Extraction from Scholarly Articles as Sequence Labeling using Contextualized Embeddings. ArXiv Preprint ArXiv:1910.08840.
  42. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513–523.
  43. Salton, G., Yang, C.S., & Yu, C.T. (1975). A theory of term importance in automatic text analysis. Journal of the American Society for Information Science, 26(1), 33–44.
  44. Tomokiyo, T., & Hurst, M. (2003). A language model approach to keyphrase extraction. In Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, 33–40.
  45. Turney, P.D. (2000). Learning algorithms for keyphrase extraction. Information Retrieval, 2(4), 303–336.
  46. Turney, P.D. (2002). Learning to extract keyphrases from text. ArXiv Preprint Cs/0212013.
  47. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 5998–6008.
  48. Wan, X., & Xiao, J. (2008). Single document keyphrase extraction using neighborhood knowledge. AAAI, 8, 855–860.
  49. Wang, M., Zhao, B., & Huang, Y. (2016). Ptr: Phrase-based topical ranking for automatic key-phrase extraction in scientific publications. International Conference on Neural Information Processing, 120–128.
  50. Wang, X., Zhang, Y., Ren, X., Zhang, Y.H., Zitnik, M., Shang, J.B., Langlotz, C., & Han, J.W. (2019). Cross-type biomedical named entity recognition with deep multi-task learning. Bioinformatics, 35(10), 1745–1752.
  51. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., & Nevill-Manning, C.G. (2005). Kea: Practical automated keyphrase extraction. In Design and Usability of Digital Libraries: Case Studies in the Asia Pacific (pp. 129–152). IGI global.
  52. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., & Macherey, K. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. ArXiv Preprint ArXiv:1609.08144.
  53. Zhang C.Z., Wang H.L., Liu Y., Wu D., Liao Y., & Wang B. (2008). Automatic keyword extraction from documents using conditional random fields. Journal of Computational Information Systems, 4(3), 1169–1180.
  54. Zhang, Q., Wang, Y., Gong, Y., & Huang, X.J. (2016). Keyphrase extraction using deep recurrent neural networks on twitter. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 836–845.
  55. Zhang, Y., Zincir-Heywood, N., & Milios, E. (2004). World wide web site summarization. Web Intelligence and Agent Systems: An International Journal, 2(1), 39–53.
  56. Zhao, W.X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.P., & Li, X. (2011). Topical keyphrase extraction from twitter. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, 379–388.
  57. Li, L.S., Dang, Y.Z., Zhang, J., & Li, D. (2013). Term extraction in the automotive field based on conditional random fields. Journal of Dalian University of Technology, 53(2), 267–272.
  58. Li, S.J., Wang, H.F., Yu, S.W., & Xin, C.S. (2004). Application research of maximum entropy model for keyword automatic indexing. Chinese Journal of Computers, 27(9), 1192–1197.
DOI: https://doi.org/10.2478/jdis-2021-0013 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 35 - 57
Submitted on: Oct 31, 2020
Accepted on: Jan 15, 2021
Published on: Mar 2, 2021
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Liangping Ding, Zhixiong Zhang, Huan Liu, Jie Li, Gaihong Yu, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.