Have a personal or library account? Click to login
Identifying Scientific and Technical “Unicorns” Cover

Identifying Scientific and Technical “Unicorns”

By: Lucy L. Xu,  Miao Qi and  Fred Y. Ye  
Open Access
|Sep 2020

References

  1. Ahmadpoor, M., & Jones, B.F. (2017). The dual frontier: Patented inventions and prior scientific advance. Science, 357(6351), 583–587.
  2. Akune, Y., Lin, C.H., Abrahams, J.L., Zhang, J.Y., Packer, N.H., Aoki-Kinoshita, K.F., & Campbella, M.P. (2016). Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database. Carbohydrate Research, 431, 56–63.
  3. Bartel, D.P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.
  4. Bertoli-Barsotti, L., & Tommaso, L. (2019). How mean rank and mean size may determine the generalised Lorenz curve: With application to citation analysis. Journal of Informetrics, 13(1), 387–396.
  5. Bonaccorsi, A. (2007). Explaining poor performance of European science: Institutions versus policies, Science and Public Policy, 34, 303–316.
  6. Bornmann, L., & Daniel, H.D. (2006). Selecting scientific excellence through committee peer review—A citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants. Scientometrics, 68(3), 427–440.
  7. Bornmann, L., & Daniel, H. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64, 45–80.
  8. Bornmann, L., & Marx, W. (2014). How to evaluate individual researchers working in the natural and life sciences meaningfully? A proposal of methods based on percentiles of citations. Scientometrics, 98(1), 487–509.
  9. Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the Association for Information Science & Technology, 66(11), 2215–2222.
  10. Bornmann, L., Wagner, C., & Leydesdorff, L. (2015). BRICS countries and scientific excellence: A bibliometric analysis of most frequently cited papers. Journal of the Association for Information Science & Technology, 66(7), 1507–1513.
  11. Boyack, K.W., Eck, N.J., Colavizza, G., & Waltman, L. (2018). Characterizing in-text citations in scientific articles: A large-scale analysis. Journal of Informetrics, 12(1), 59–73.
  12. Casanova, L., Cornelius, P.K., & Dutta, S. (2018). Financing entrepreneurship and innovation in emerging markets. Salt Lake city: Academic Press, 185–218.
  13. Cbinsights. (2020). The Global Unicorn Club Current Private Companies Valued At $1B+ (including whisper valuations). Retrieved from https://www.cbinsights.com/research-unicorn-companies.
  14. Citation Thresholds. (2020). archive.sciencewatch.com/ [Online]. Retrieved from: http://archive.sciencewatch.com/about/met/thresholds/
  15. Comins, J.A., & Leydesdorff, L. (2017). Citation algorithms for identifying research milestones driving biomedical innovation. Scientometrics, 110(3), 1495–1504.
  16. Csajbók, E., Berhidi A., Vasas, L., & Schubert, András. (2007). Hirsch-index for countries based on essential science indicators data. Scientometrics, 73(1), 91–117.
  17. Cugurullo, F., Datta, A., & Shaban, A. (2016). Mega-urbanization in the global south: Fast cities and new urban utopias of the postcolonial state. New York: Routledge, 23(3), 66–80.
  18. Davis, R.A., & Cunningham, P.S. (1990). Creative thought in neurosurgical research: The value of citation analysis. Neurosurgery, 26(2), 345–353.
  19. de Solla Price, D.J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.
  20. Elbarouni, B., Ducas, J., Friesen, D., & Zhang, H. (2017). The uninterrupted anticoagulation in coronary catheterization (unicorn) registry. A single center experience. Canadian Journal of Cardiology, 33(10), S144–S145.
  21. Essential Science Indicators. (2020). clarivate.com. Retrieved from: https://clarivate.com/products/essential-science-indicators/.
  22. Fu, H.Z., Chuang, K.Y., Wang, M.H., & Ho, Y.A. (2011). Characteristics of research in China assessed with essential science indicators. Scientometrics, 88(5), 841–862.
  23. Karakülah, G., Arslan, N., Yandım, C., & Suner, A. (2019). TEffect R: An R package for studying the potential effects of transposable elements on gene expression with linear regression model. Peer J, 7, 6–20.
  24. Garfield, E. (1972). Citation analysis as a tool in journal evaluation: Journals can be ranked by frequency and impact of citations for science policy studies. Science, 178(4060), 471.
  25. Garfield, E. (1979). Citation Indexing: Its theory and application in science, technology and humanities. New York: Wiley.
  26. Garfield, E. (1979). Is citation analysis a legitimate evaluation tool? Scientometrics, 1(4), 359–375.
  27. Garfield, E. (1979). Trends in biochemical literature. Trends in biochemical literature, 4(12), N290.
  28. Garfield, E. (1991). A citation analysis of Austrian medical-research and wiener-klinishe wochenschrift. Wiener Klinische Wochenschrift, 103(11), 318–325.
  29. Garfield, E., Malin, M.V., & Small, H. (1978). Citation data as science indicators. In Y. Elkana, J. Lederberg, R.K. Merton, A. Thackray, & H. Zuckerman (Eds.), Toward a metric of science: The advent of science indicators, 179–207. New York: Wiley.
  30. González-Betancor, S.M., & Dorta-González, P. (2017). An indicator of the impact of journals based on the percentage of their highly cited publications. Online Information Review, 41, 398–411.
  31. Glänzel, W., & Meyer, M. (2003). Patents cited in the scientific literature: An exploratory study of ‘reverse’ citation relations. Scientometrics, 58(2), 415–428.
  32. Grimwade, A., & Garfield, E. (2002). The Scientist on the Web. Scientist, 16(16), 10.
  33. Guerrero-Bote, V.P., & Moya-Anegón, F. (2012). A further step forward in measuring journals’ scientific prestige: The SJR2 indicator. Journal of Informetrics, 6(4), 674–688.
  34. Harzing, A.W. (2015). Health warning: Might contain multiple personalities—The problem of homonyms in Thomson Reuters essential science indicators. Scientometrics, 105(3), 2259–2270.
  35. Harhoff, D., Narin, F., Scherer, F.M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics, 81(3), 511–515.
  36. Hemmelgarn, B.J., Setser, M.E., & Shelton, IV.F.E. (2004). Surgical stapling instrument for laparoscopic and endoscopic clinical procedure has firing device that has a distally presented cutting edge longitudinally received between the elongated channel and the anvil. EP 1479349-A1, 2004-11-24. Retrieved from https://worldwide.espacenet.com/patent/search/family/042229108/publication/EP1479349A1?q=EP1479349A1
  37. Highly Cited Papers. (2020). archive.sciencewatch.com. Retrieved from http://archive.sciencewatch.com/about/met/core-hcp.
  38. Hirsch, J.E. (2010). An index to quantify an individual's scientific research output that takes into account the effect of multiple co-authorship. Scientometrics, 85(3), 741–754.
  39. Huang, M., Zolnoori, M., & Balls-Berry, J.E. (2019). Technological innovations in disease management: Text mining us patent data from 1995 to 2017. Journal of Medical Internet Research, 21(4), 1–7.
  40. Kuan, C.H., Chen, D.Z., & Huang, M.H. (2019). Bibliographically coupled patents: Their temporal pattern and combined relevance. Journal of Informetrics, 13(4), 100978.
  41. Kuan, C.H., & Cheng, H.J. (2014). Do we miscount patent citations? An empirical study on the impact of overlooking the citations to a patent's pre-grant publication. International Conference on Industrial Engineering and Engineering Management, 1034–1037.
  42. Laengle, S., Merigo, J.M., Miranda, J., Słowiński, R., Bomze, I., Borgonovo, E., Dysone, R.G., Oliveira, J.F., & Teunterg, R. (2017). Forty years of the European Journal of Operational Research: A bibliometric overview. European Journal of Operational Research, 262(3), 803–816.
  43. Lander, E.S., Lauren, L.M., Birren, B., Chad, N., Michael, C.Z., Baldwin, J., Devon, K., Dewar, K., Doyle, M., & Fitzhugh, W. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.
  44. Leydesdorff, L. (2004). The evalution of research and the scietometric research program: Histroical evlution and redefinitons of the relationship. Studies in Science of Science, 22(3), 225–232.
  45. Lee, E. (2013). Welcome to the unicorn club: Learning from billion-dollar startups. Retrieved from https://techcrunch.com/2013/11/02/welcome-to-the-unicorn-club/
  46. Merigo, J.M., & Yang, J.B. (2017). A bibliometric analysis of operations research and management science. Omega-International Journal of Management Science, 73, 37–48.
  47. Meyer, M. (2000). What is special about patent citations? Differences between scientific and patent citations. Scientometric, 49(1), 93–123.
  48. Moed, H.F., Colledge L., Reedijk, J., Moya-Anegon, Felix., Guerrero-Bote, V., Plume, Andrew, & Amin, M. (2012). Citation-based metrics are appropriate tools in journal assessment provided that they are accurate and used in an informed way. Scientometrics, 92(2), 367–376.
  49. Moed, H.F., Luwei, M., & Nederhof, A.J. (2002). Towards research performance in the humanities. Library Trends, 50(3), 498–520.
  50. Moral-Munoz, J.A., Lucena-Anton, D., Perez-Cabezas, V., Carmona-Barrientos, I., González-Medina, G., & Ruiz-Molinero, C. (2018). Highly cited papers in Microbiology: Identification and conceptual analysis. Fems Microbiology Letters, 365, 20.
  51. Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147–155.
  52. Perez-Cabezas, V., Ruiz-Molinero, C., Carmona-Barrientos, I., Herrera-Viedma, E., Cobo, M.J., & Moral-Munoz, J.A. (2018). Highly cited papers in rheumatology: Identification and conceptual analysis. Scientometrics, 116 (1), 555–568.
  53. Persson, O. (1986). Online bibliometrics-a research tool for every man. Scientometrics, 10(1–2), 69–75.
  54. Ponomareva, l.V., Williams, D.E., Hackettb C.J., Schnell, J.D., & Haak, L.L. (2014), Predicting highly cited papers: A Method for Early Detection of Candidate Breakthroughs. Technological Forecasting and Social Change, 81, 49–55.
  55. Price, D.S. (1963). Little science, big science. New York: Columbia University Press.
  56. Radicchi, F., Fortuno, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268–17272.
  57. Rebentisch, H., Thompson, C., Côté-Royc, L., & Moserc, S. (2020). Unicorn planning: Lessons from the rise and fall of an American ‘smart’ mega-development. Cities, 101, 102686–102692.
  58. Research areas. (2020). images.webofknowledge.com. Retrieved from: http://images.webofknowledge.com//WOKRS535R52/help/zh_CN/WOS/hp_research_areas_easca.html.
  59. Rodriguez-Navarro, A. (2016). Research assessment based on infrequent achievements: A comparison of the United States and Europe in terms of highly cited papers and Nobel Prizes. Journal of the Association for Information Science & Technology, 67(3), 731–740.
  60. Ruiz-Trillo, I., Burger, G., Holland, P.W.H., King, N., Lang, B.F., Roger, A.J., & Gray, M.W. (2007). The origins of multicellularity: A multi-taxon genome initiative. Trends in Genetics, 23(3), 113–118.
  61. Schneider, C., Rasband, W.S., & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.
  62. Shelton, IV.F.E. (2006). Surgical instrument e.g. endo-cutter for use during fastening of buttress pads to tissue, comprises staple applying assembly attached to elongate shaft, which includes opposing tissue compression surfaces. EP 1621141-A2, 2006-02-01. Retrieved from https://worldwide.espacenet.com/patent/search/family/035285352/publication/EP1621141A2?q=EP1621141A2
  63. Silva, M.R. (2016). Journal impact factors for the year-after the next can be objectively predicted. Medical Express, 3(5), M160506.
  64. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.
  65. Takahashi, K. Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.
  66. Tamura, K., Peterson, D., Peterson, N., Stecher, Glen., Nei, M., & Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.
  67. The Lancet Digital Health. (2019). Unicorns and cowboys in digital health: The importance of public perception. The Lancet Digital Health, 1(7), e319.
  68. Tijssen, R.J.W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science-technology interactions and knowledge flows. Research Policy, 30(1), 35–54.
  69. Wang, G.Y., Hu, G.Y., Li, C.F., & Tangd, L. (2018). Long live the scientists: Tracking the scientific fame of great minds in physics. Journal of Informetrics, 12(4), 1089–1098.
  70. White, H.D. (2015). Co-cited author retrieval and relevance theory: Examples from the humanities. Scientometrics, 102(3), 2275–2299.
  71. Wharton, G.A., Sood, H.S., Sissons, A., & Mossialos, E. (2019). Virtual primary care: Fragmentation or integration? The Lancet Digital Health, 1(7), e330–e331.
  72. White, H.D., Boell, S.K., & Yu, H. (2009). Libcitations: A measure for comparative assessment of Book Publications in the Humanities and Social Sciences. Journal of The American Society for Information Science & Technology, 60(6), 1083–1096.
  73. Wikipedia. (2020). Unicorn From Wikipedia, the free encyclopedia. Retrieved from https://en.wikipedia.org/wiki/Unicorn.
  74. Wikipedia. (2020). Unicorn (finance) From Wikipedia, the free encyclopedia. Retrieved from https://en.wikipedia.org/wiki/Unicorn_(finance).
  75. Ye, S.Q., Xing, R., Liu, J., & Xing, F.Y. (2013). Bibliometric analysis of Nobelists’ awards and landmark papers in physiology or medicine during 1983–2012. Annals of Medicine, 45(8), 532–538.
  76. Zeng, C.J., Qi, E. P, Li, S.S. Stanley, H.E., & Ye, F.Y. (2017). Statistical characteristics of breakthrough discoveries in science using the metaphor of black and white swans. Physica A, 487, 40–46.
  77. Zhang, H.H., Zuccala, A.A. & Ye, F.Y. (2019). Tracing the ‘Swan-groups’ of Physics and Economics in the Key Publications of Nobel Laureates, Scientometrics, 119, 425–436.
  78. Zhang, J.A., Vogeley, M.S., & Chen, C.M. (2011). Scientometrics of big science: A case study of research in the Sloan Digital Sky Survey. Scientometrics, 86(1), 1–14.
  79. Zou, C., & Peterson, J.B. (2016). Quantifying the scientific output of new researchers using the zp-index. Scientometrics, 106(3), 901–916.
DOI: https://doi.org/10.2478/jdis-2021-0002 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 96 - 115
Submitted on: Mar 1, 2020
Accepted on: Jul 24, 2020
Published on: Sep 22, 2020
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Lucy L. Xu, Miao Qi, Fred Y. Ye, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.