References
- Aggarwal, C.C. (2018). Machine learning for text. Springer.
- Aguillo, I.F., Ortega, J.L., & Fernández, M. (2008). Webometric ranking of world universities: Introduction, methodology, and future developments. Higher education in Europe, 33(2–3), 233–244.
- Aguillo, I.F., & Orduna-Malea, E. (2013) The Ranking Web and the “World-Class” Universities: New Webometric Indicators Based on G-Factor, Interlinking, and Web 2.0 Tools. In book: Building World-Class Universities pp. 197–217. doi: 10.1007/978-94-6209-034-7_13
- Bar-Ilan, J. (2019). Data Collection from the Web for Informetric Purposes. In Springer Handbook of Science and Technology Indicators (pp. 781–800). Springer, Cham.
- Bianchi, G., R. Bruni, & F. Scalfati, (2018). Identifying e-Commerce in Enterprises by means of Text Mining and Classification Algorithms. Mathematical Problems in Engineering, 7231920.1-7231920.8.
- Bianchi, G., Bruni, R., Laureti Palma, A., Perani, G., & Scalfati, F. (2019). The corporate identity of Italian Universities on the Web: a webometrics approach. In the Proceedings of the 2019 ISSI Conference ISSI (pp. 2273–2278).
- Björneborn, L., & Ingwersen, P. (2004). Toward a basic framework for webometrics. Journal of the American Society for Information Science and Technology, 55(14), 1216–1227.
- Bruni, R., & Bianchi, G. (2015). Effective classification using a small training set based on discretization and statistical analysis. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2349–2361.
- Bruni, R., Bianchi, G., Dolente, C., & Leporelli, C. (2019). Logical Analysis of Data as a Tool for the Analysis of Probabilistic Discrete Choice Behavior. Computers & Operations Research, 106, 191–201.
- Bruni, R., & Bianchi, G. (2020). Website categorization: A formal approach and robustness analysis in the case of e-commerce detection. Expert Systems with Applications, 142, 113001.
- Bychkova1, M.N., & Okushova, G.A. (2017). Methods of analysis of a modern university's presence in the Internet communicative space. AI & Society, 32, 89–100.
- Daraio, C., & Bonaccorsi, A. (2017). Beyond university rankings? Generating new indicators on universities by linking data in open platforms. Journal of the Association for Information Science and Technology, 68(2), 508–529.
- Daraio, C., & Glänzel, W. (2016). Grand challenges in data integration—State of the art and future perspectives: An introduction. Scientometrics, 108(1), 391–400.
- Daraio, C., Bruni, R., Catalano, G., Daraio, A., Matteucci, G., Scannapieco, M., ... , & Lepori, B. (2020). A tailor-made data quality approach for higher educational data. Journal of Data and Information Science, 5(3), 129–160.
- Elgohary, A.E. (2008). Arab universities on the web: A webometric study. Electronic Library, 26(3), 374–386.
- Glänzel, W., Moed, H.F., Schmoch, U., & Thelwall, M. (2019). Springer Handbook of Science and Technology Indicators. Springer Nature.
- Göransson, B., & Brundenius, C. (2010). Universities in transition: The changing role and challenges for academic institutions. Springer Science & Business Media.
- Islam, M.A., & Alam, M.S. (2011). Webometric study of private universities in Bangladesh. Malaysian Journal of Library and Information Science, 16(2), 115–126.
- McCoy, C.G., Nelson, M.L., & Weigle, M.C. (2018) Mining the Web to approximate university rankings. Information Discovery and Delivery, 46(3), 173–183.
- Pal, A., Sarkar, A., & Bhattacharya, U. (2019). Webometric analysis of open universities in India. Library Philosophy and Practice. 3038.
- Seeber, M., Lepori, B., Lomi, A., Aguillo, I., & Barberio, V. (2012). Factors affecting web links between European higher education institutions. Journal of informetrics, 3, 435–447.
- Thelwall, M. (2019). Online Indicators for Non-Standard Academic Outputs. In Springer Handbook of Science and Technology Indicators (pp. 835–856). Springer, Cham.
- Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. Synthesis lectures on information concepts, retrieval, and services 1.1 p. 1–116.
- Thelwall, M., Vaughan, L., & Björneborn, L. (2005). “Webometrics.” Annual Review of Information Science and Technology 39.1 p. 81–135.
- Vaughan, Liwen, & R. Yang. (2013). Web traffic and organization performance measures: Relationships and data sources examined. Journal of Informetrics 7.3 p. 699–711.
- Wouters, P., Zahedi, Z., & Costas, R. (2019). Social media metrics for new research evaluation. In Springer handbook of science and technology indicators (pp. 687–713). Springer, Cham.