Have a personal or library account? Click to login
Exploring the Potentialities of Automatic Extraction of University Webometric Information Cover

Exploring the Potentialities of Automatic Extraction of University Webometric Information

Open Access
|Nov 2020

References

  1. Aggarwal, C.C. (2018). Machine learning for text. Springer.
  2. Aguillo, I.F., Ortega, J.L., & Fernández, M. (2008). Webometric ranking of world universities: Introduction, methodology, and future developments. Higher education in Europe, 33(2–3), 233–244.
  3. Aguillo, I.F., & Orduna-Malea, E. (2013) The Ranking Web and the “World-Class” Universities: New Webometric Indicators Based on G-Factor, Interlinking, and Web 2.0 Tools. In book: Building World-Class Universities pp. 197–217. doi: 10.1007/978-94-6209-034-7_13
  4. Bar-Ilan, J. (2019). Data Collection from the Web for Informetric Purposes. In Springer Handbook of Science and Technology Indicators (pp. 781–800). Springer, Cham.
  5. Bianchi, G., R. Bruni, & F. Scalfati, (2018). Identifying e-Commerce in Enterprises by means of Text Mining and Classification Algorithms. Mathematical Problems in Engineering, 7231920.1-7231920.8.
  6. Bianchi, G., Bruni, R., Laureti Palma, A., Perani, G., & Scalfati, F. (2019). The corporate identity of Italian Universities on the Web: a webometrics approach. In the Proceedings of the 2019 ISSI Conference ISSI (pp. 2273–2278).
  7. Björneborn, L., & Ingwersen, P. (2004). Toward a basic framework for webometrics. Journal of the American Society for Information Science and Technology, 55(14), 1216–1227.
  8. Bruni, R., & Bianchi, G. (2015). Effective classification using a small training set based on discretization and statistical analysis. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2349–2361.
  9. Bruni, R., Bianchi, G., Dolente, C., & Leporelli, C. (2019). Logical Analysis of Data as a Tool for the Analysis of Probabilistic Discrete Choice Behavior. Computers & Operations Research, 106, 191–201.
  10. Bruni, R., & Bianchi, G. (2020). Website categorization: A formal approach and robustness analysis in the case of e-commerce detection. Expert Systems with Applications, 142, 113001.
  11. Bychkova1, M.N., & Okushova, G.A. (2017). Methods of analysis of a modern university's presence in the Internet communicative space. AI & Society, 32, 89–100.
  12. Daraio, C., & Bonaccorsi, A. (2017). Beyond university rankings? Generating new indicators on universities by linking data in open platforms. Journal of the Association for Information Science and Technology, 68(2), 508–529.
  13. Daraio, C., & Glänzel, W. (2016). Grand challenges in data integration—State of the art and future perspectives: An introduction. Scientometrics, 108(1), 391–400.
  14. Daraio, C., Bruni, R., Catalano, G., Daraio, A., Matteucci, G., Scannapieco, M., ... , & Lepori, B. (2020). A tailor-made data quality approach for higher educational data. Journal of Data and Information Science, 5(3), 129–160.
  15. Elgohary, A.E. (2008). Arab universities on the web: A webometric study. Electronic Library, 26(3), 374–386.
  16. Glänzel, W., Moed, H.F., Schmoch, U., & Thelwall, M. (2019). Springer Handbook of Science and Technology Indicators. Springer Nature.
  17. Göransson, B., & Brundenius, C. (2010). Universities in transition: The changing role and challenges for academic institutions. Springer Science & Business Media.
  18. Islam, M.A., & Alam, M.S. (2011). Webometric study of private universities in Bangladesh. Malaysian Journal of Library and Information Science, 16(2), 115–126.
  19. McCoy, C.G., Nelson, M.L., & Weigle, M.C. (2018) Mining the Web to approximate university rankings. Information Discovery and Delivery, 46(3), 173–183.
  20. Pal, A., Sarkar, A., & Bhattacharya, U. (2019). Webometric analysis of open universities in India. Library Philosophy and Practice. 3038.
  21. Seeber, M., Lepori, B., Lomi, A., Aguillo, I., & Barberio, V. (2012). Factors affecting web links between European higher education institutions. Journal of informetrics, 3, 435–447.
  22. Thelwall, M. (2019). Online Indicators for Non-Standard Academic Outputs. In Springer Handbook of Science and Technology Indicators (pp. 835–856). Springer, Cham.
  23. Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. Synthesis lectures on information concepts, retrieval, and services 1.1 p. 1–116.
  24. Thelwall, M., Vaughan, L., & Björneborn, L. (2005). “Webometrics.” Annual Review of Information Science and Technology 39.1 p. 81–135.
  25. Vaughan, Liwen, & R. Yang. (2013). Web traffic and organization performance measures: Relationships and data sources examined. Journal of Informetrics 7.3 p. 699–711.
  26. Wouters, P., Zahedi, Z., & Costas, R. (2019). Social media metrics for new research evaluation. In Springer handbook of science and technology indicators (pp. 687–713). Springer, Cham.
DOI: https://doi.org/10.2478/jdis-2020-0040 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 43 - 55
Submitted on: Jul 20, 2020
|
Accepted on: Nov 9, 2020
|
Published on: Nov 21, 2020
In partnership with: Paradigm Publishing Services

© 2020 Gianpiero Bianchi, Renato Bruni, Cinzia Daraio, Antonio Laureti Palma, Giulio Perani, Francesco Scalfati, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.