Have a personal or library account? Click to login
Detection of Malignant and Benign Breast Cancer Using the ANOVA-BOOTSTRAP-SVM Cover

Detection of Malignant and Benign Breast Cancer Using the ANOVA-BOOTSTRAP-SVM

Open Access
|May 2020

Abstract

Purpose

The aim of this research is to propose a modification of the ANOVA-SVM method that can increase accuracy when detecting benign and malignant breast cancer.

Methodology

We proposed a new method ANOVA-BOOTSTRAP-SVM. It involves applying the analysis of variance (ANOVA) to support vector machines (SVM) but we use the bootstrap instead of cross validation as a train/test splitting procedure. We have tuned the kernel and the C parameter and tested our algorithm on a set of breast cancer datasets.

Findings

By using the new method proposed, we succeeded in improving accuracy ranging from 4.5 percentage points to 8 percentage points depending on the dataset.

Research limitations

The algorithm is sensitive to the type of kernel and value of the optimization parameter C.

Practical implications

We believe that the ANOVA-BOOTSTRAP-SVM can be used not only to recognize the type of breast cancer but also for broader research in all types of cancer.

Originality/value

Our findings are important as the algorithm can detect various types of cancer with higher accuracy compared to standard versions of the Support Vector Machines.

DOI: https://doi.org/10.2478/jdis-2020-0012 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 62 - 75
Submitted on: Dec 22, 2019
Accepted on: Apr 7, 2020
Published on: May 20, 2020
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Borislava Petrova Vrigazova, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.