Have a personal or library account? Click to login
Masked Sentence Model Based on BERT for Move Recognition in Medical Scientific Abstracts Cover

Masked Sentence Model Based on BERT for Move Recognition in Medical Scientific Abstracts

Open Access
|Dec 2019

References

  1. Amini, I., Martinez, D., & Molla, D. (2012). Overview of the ALTA 2012 shared task. In Proceedings of the Australasian Language Technology Association Workshop 2012: ALTA 2012 (pp. 124–129). Dunedin, New Zealand.
  2. Badie, K., Asadi, N., & Tayefeh Mahmoudi, M. (2018). Zone identification based on features with high semantic richness and combining results of separate classifiers. Journal of Information and Telecommunication, 2(4), 411–427.
  3. Basili, R. & Pennacchiotti, M. (2010). Distributional lexical semantics: Toward uniform representation paradigms for advanced acquisition and processing tasks. Natural Language Engineering, 1(1), 1–12.
  4. Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: Pretrained contextualized embeddings for scientific text. arXiv:1903.10676v3.
  5. Dasigi, P., Burns, G.A.P.C., Hovy, E., & Waard, A. (2017). Experiment segmentation in scientific discourse as clause-level structured prediction using recurrent neural networks. arXiv:1702.05398.
  6. Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.
  7. Ding, L.P., Zhang, Z.X., & Liu, H. (2019). Research on factors affecting the SVM model performance on move recognition. Data Analysis and Konwledge Discovery, http://kns.cnki.net/kcms/detail/10.1478.G2.20191012.0931.002.html.
  8. Firth, J.R. (1930). A synopsis of linguistic theory, 1930–1955. In: Firth, J.R., Ed., Studies in Linguistic Analysis, Longmans, London, 168–205.
  9. Fisas, B., Ronzano, F., & Saggion, H. (2016). A multi-layered annotated corpus of scientific papers. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016).
  10. Franck Dernoncourt & Ji Young Lee. (2017). Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts. In Proceedings of the 8th International Joint Conference on Natural Language Processing.
  11. Gerlach, M., Peixoto, T.P., Altmann, E.G., & Altmann, E.G. (2018). A network approach to topic models. Science advances, 4(7), eaaq1360.
  12. Hirohata, K., Okazaki, N., Ananiadou, S., & Mitsuru. (2018). Identifying sections in scientific abstracts using conditional random fields. In Proceedings of the Third International Joint Conference on Natural Language Processing.
  13. Ma, M.B., Huang, L., Xiang, B., & Zhou, B.W. (2015). Dependency-based convolutional neural networks for sentence embedding. arXiv:1507.01839.
  14. Peters, M.E., Neumann, M., Iyyer, M., et al. (2018). Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. doi: 10.18653/v1/N18-1202 arXiv:1802.05365.
  15. Radford, A., Narasimhan, K., Salimans, T., & Sutskever Ilya (2018). Improving language understanding by generative pre-training. https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/languageunderstandingpaper.pdf
  16. Lai, S.W., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional neural networks for text classification. In AAAI’15 Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2267–2273.
  17. Swales, J.M. (2004). Research genres: Explorations and applications. Cambridge: Cambridge University Press.
  18. Taylor, W.L. (1953). “Cloze procedure”: A new tool for measuring readability. Journalism & Mass Communication Quarterly, 30(4), 415–433. doi: https://doi.org/10.1177/107769905303000401
  19. Teufel, S. (1999). Argumentative zoning: Information extraction from scientific text. Edinburgh: University of Edinburgh.
  20. Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. arXiv:1706.03762v5.
  21. Yamamoto, Y. & Takagi, T. (2005). A sentence classification system for multi-document summarization in the biomedical domain. In Proceedings of International Workshop on Biomedical Data Engineering, pages 90–95.
  22. Yoon Kim. (2014). Convolutional neural networks for sentence classification. arXiv:1408.5882.
  23. Zhang, Z., Liu, H., Ding, L., et al. (2019). Moves recognition in abstract of research paper based on deep learning. In Proceedings of 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL). IEEE, pages 390–391.
DOI: https://doi.org/10.2478/jdis-2019-0020 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 42 - 55
Submitted on: Sep 27, 2019
Accepted on: Nov 5, 2019
Published on: Dec 27, 2019
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Gaihong Yu, Zhixiong Zhang, Huan Liu, Liangping Ding, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.