References
- Amini, I., Martinez, D., & Molla, D. (2012). Overview of the ALTA 2012 shared task. In Proceedings of the Australasian Language Technology Association Workshop 2012: ALTA 2012 (pp. 124–129). Dunedin, New Zealand.
- Badie, K., Asadi, N., & Tayefeh Mahmoudi, M. (2018). Zone identification based on features with high semantic richness and combining results of separate classifiers. Journal of Information and Telecommunication, 2(4), 411–427.
- Basili, R. & Pennacchiotti, M. (2010). Distributional lexical semantics: Toward uniform representation paradigms for advanced acquisition and processing tasks. Natural Language Engineering, 1(1), 1–12.
- Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: Pretrained contextualized embeddings for scientific text. arXiv:1903.10676v3.
- Dasigi, P., Burns, G.A.P.C., Hovy, E., & Waard, A. (2017). Experiment segmentation in scientific discourse as clause-level structured prediction using recurrent neural networks. arXiv:1702.05398.
- Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.
- Ding, L.P., Zhang, Z.X., & Liu, H. (2019). Research on factors affecting the SVM model performance on move recognition. Data Analysis and Konwledge Discovery, http://kns.cnki.net/kcms/detail/10.1478.G2.20191012.0931.002.html.
- Firth, J.R. (1930). A synopsis of linguistic theory, 1930–1955. In: Firth, J.R., Ed., Studies in Linguistic Analysis, Longmans, London, 168–205.
- Fisas, B., Ronzano, F., & Saggion, H. (2016). A multi-layered annotated corpus of scientific papers. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016).
- Franck Dernoncourt & Ji Young Lee. (2017). Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts. In Proceedings of the 8th International Joint Conference on Natural Language Processing.
- Gerlach, M., Peixoto, T.P., Altmann, E.G., & Altmann, E.G. (2018). A network approach to topic models. Science advances, 4(7), eaaq1360.
- Hirohata, K., Okazaki, N., Ananiadou, S., & Mitsuru. (2018). Identifying sections in scientific abstracts using conditional random fields. In Proceedings of the Third International Joint Conference on Natural Language Processing.
- Ma, M.B., Huang, L., Xiang, B., & Zhou, B.W. (2015). Dependency-based convolutional neural networks for sentence embedding. arXiv:1507.01839.
- Peters, M.E., Neumann, M., Iyyer, M., et al. (2018). Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. doi: 10.18653/v1/N18-1202 arXiv:1802.05365.
- Radford, A., Narasimhan, K., Salimans, T., & Sutskever Ilya (2018). Improving language understanding by generative pre-training. https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/languageunderstandingpaper.pdf
- Lai, S.W., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional neural networks for text classification. In AAAI’15 Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2267–2273.
- Swales, J.M. (2004). Research genres: Explorations and applications. Cambridge: Cambridge University Press.
- Taylor, W.L. (1953). “Cloze procedure”: A new tool for measuring readability. Journalism & Mass Communication Quarterly, 30(4), 415–433. doi: https://doi.org/10.1177/107769905303000401
- Teufel, S. (1999). Argumentative zoning: Information extraction from scientific text. Edinburgh: University of Edinburgh.
- Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. arXiv:1706.03762v5.
- Yamamoto, Y. & Takagi, T. (2005). A sentence classification system for multi-document summarization in the biomedical domain. In Proceedings of International Workshop on Biomedical Data Engineering, pages 90–95.
- Yoon Kim. (2014). Convolutional neural networks for sentence classification. arXiv:1408.5882.
- Zhang, Z., Liu, H., Ding, L., et al. (2019). Moves recognition in abstract of research paper based on deep learning. In Proceedings of 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL). IEEE, pages 390–391.