References
- Adriaanse, L., & Rensleigh, C. (2013). Web of Science, Scopus and Google Scholar. The Electronic Library, 31(6), 727–744.
- Bornmann, L., & Haunschild, R. (2016). Citation score normalized by cited references (Csncr): The introduction of a new citation impact indicator. Journal of Informetrics, 10(3), 875–887.
- Bornmann, L., & Marx, W. (2015). Methods for the generation of normalized citation impact scores in bibliometrics: Which method best reflects the judgements of experts? Journal of Informetrics, 9(2), 408–418.
- Bornmann, L., Thor, A., Marx, W., & Schier, H. (2016). The application of bibliometrics to research evaluation in the Humanities and Social Sciences: An exploratory study using normalized Google Scholar data for the publications of a research institute. Journal of the Association for Information Science and Technology, 67(11), 2778–2789.
- Cornford, T., & Smithson, S. (2005). Project research in information systems: A student’s guide. Springer.
- Crespo, J. A., Herranz, N., Li, Y., & Ruiz-Castillo, J. (2014). The effect on citation inequality of differences in citation practices at the Web of Science subject category level. Journal of the Association for Information Science and Technology, 65(6), 1244–1256.
- Fragkiadaki, E., & Evangelidis, G. (2014). Review of the indirect citations paradigm: Theory and practice of the assessment of papers, authors and journals. Scientometrics, 99(2), 261–288.
- Fragkiadaki, E., & Evangelidis, G. (2016). Three novel indirect indicators for the assessment of papers and authors based on generations of citations. Scientometrics, 106(2), 657–694.
- Garfield, E. (1979). Citation indexing: Its theory and application in science, technology and humanities. New York: Wiley.
- Giménez-Toledo, E., Mañana-Rodríguez, J., Engels, T. C., Ingwersen, P., Pölönen, J., Sivertsen, G., Verleysen, F. T., & Zuccala, A. A. (2016). Taking scholarly books into account: Current developments in five European countries. Scientometrics, 107(2), 685–699.
- Glänzel, W., Thijs, B., & Chi, P. S. (2016). The challenges to expand bibliometric studies from periodical literature to monographic literature with a new data source: The book citation index. Scientometrics, 109(3), 2165–2179.
- Harzing, A. W. 2007. Publish or Perish. Retrieved from http://www.harzing.com/pop.html
- Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804.
- Heckscher, C. C., Maccoby, M., Ramirez, R., & Tixier, P. E. (2003). Agents of change: Crossing the post-industrial divide. Wiley Online Library.
- Klosik , D. F., & Bornholdt, S. (2014). The citation wake of publications detects nobel laureates’ papers. PloS one, 9(12), e113184.
- Kousha , K., Thelwall, M., & Rezaie, S. (2011). Assessing the citation impact of books: The role of Google Books, Google Scholar, and Scopus. Journal of the Association for Information Science and Technology, 62(11), 2147–2164.
- Leydesdorff, L., Bornmann, L., Opthof, T., & Mutz, R. (2011). Normalizing the measurement of citation performance: Principles for comparing sets of documents. arXiv.
- Leydesdorff, L., & Felt, U. (2012). “Books” and “Book Chapters” in the Book Citation Index (Bkci) and Science Citation Index (Sci, Sosci, A & Hci). Proceedings of the American Society for Information Science and Technology, 49(1), 1–7.
- Leydesdorff, L., & Opthof, T. (2010). Scopus’s source normalized impact per paper (Snip) versus a journal impact factor based on fractional counting of citations. Journal of the American Society for Information Science and Technology, 61(11), 2365–2369.
- Meho, L., & Yang, K. (2007). Impact of data sources on citation counts and rankings of lis faculty: Web of Science, Scopus and Google Scholar. Journal American Society for Information Science and Technology, 58(13), 2105–2125.
- Mingers, J. 2008. Exploring the dynamics of journal citations: Modelling with S-Curves. Journal Operational Research Society, 59(8), 1013–1025.
- Mingers, J., & Leydesdorff, L. (2015a). Identifying research fields within business and management: A journal cross-citation analysis. Journal of the Operational Research Society, 66(8), 1370– 1384.
- Mingers, J., & Leydesdorff, L. (2015b). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19.
- Mingers, J., & Lipitakis, E. (2010). Counting the citations: A comparison of Web of Science and Google Scholar in the field of management. Scientometrics, 85(2), 613–625.
- Mingers, J., & Lipitakis, E. (2013). Evaluating a department’s research: Testing the Leiden methodology in business and management. Information Processing & Management, 49(3), 587–595.
- Mingers, J., & Meyer, M. (2017). Normalizing Google Scholar data for use in research evaluation. Scientometrics, 112(2), 1111–1121.
- Moed, H. (2010a). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4(3), 265–277.
- Moed, H. (2010b). The source-normalized impact per paper (Snip) is a valid and sophisticated indicator of journal citation impact. Journal of the American Society for Information Science and Technology, 62(1), 211–213.
- Morgan , G. (1986). Images of Organisation. Newbury Park: Sage.
- Opthof, T., & Leydesdorff, L. (2010). Caveats for the journal and field normalizations in the CWTS (“Leiden”) evaluations of research performance. Journal of Informetrics, 4(3), 423–430.
- Prins, A. A. M., Costas, R., van Leeuwen, T. N., & Wouters, P. F. (2016). Using Google Scholar in research evaluation of humanities and social science programs: A comparison with Web of Science data. Research Evaluation, 25(3), 264–270.
- Torres -Salinas, D., Robinson-García, N., Cabezas-Clavijo, Á., & Jiménez-Contreras, E. (2014). Analyzing the citation characteristics of books: Edited books, book series and publisher types in the book citation index. Scientometrics, 98(3), 2113–2127.
- Waltman, L., & van Eck, N. (2013). A systematic empirical comparison of different approaches for normalizing citation impact indicators. Journal of Informetrics, 7(4), 833–849.
- Waltman, L., van Eck, N., van Leeuwen, T., & Visser, M. (2013). Some modifications to the Snip journal impact indicator. Journal of Informetrics, 7(2), 272–285.
- Waltman, L., van Eck, N., van Leeuwen, T., Visser, M., & van Raan, A. (2010). Towards a new crown indicator: Some theoretical considerations. Journal of Informetrics, 5(1), 37–47.
- Waltman, L., van Eck, N., van Leeuwen, T., Visser, M., & van Raan, A. (2011). Towards a new crown indicator: An empirical analysis. Scientometrics, 87(3), 467–481.
- Williams, G., Basso, A., Galleron, I., & Lippiello, T. (2018). More, less or better: The problem of evaluating books in SSH research. The Evaluation of Research in Social Sciences and Humanities, A. Bonaccorsi (ed.). Springer, 133–158.
- Zitt, M. (2010). Citing-side normalization of journal impact: A robust variant of the audience factor. Journal of Informetrics, 4(3), 392–406.
- Zitt, M. (2011). Behind citing-side normalization of citations: Some properties of the journal impact factor. Scientometrics, 89(1), 329–344.
- Zuccala, A., Breum, M., Bruun, K., & Wunsch, B. T. (2018). Metric assessments of books as families of works. Journal of the Association for Information Science and Technology, 69(1), 146–157.
- Zuccala, A., & Cornacchia, R. (2016). Data matching, integration, and interoperability for a metric assessment of monographs. Scientometrics, 108(1), 465–484.