Have a personal or library account? Click to login
Sentiment Analysis of Japanese Tourism Online Reviews Cover

Sentiment Analysis of Japanese Tourism Online Reviews

By: Chuanming Yu,  Xingyu Zhu,  Bolin Feng,  Lin Cai and  Lu An  
Open Access
|Feb 2019

References

  1. Abd-Elhamid, L., Elzanfaly, D., & Eldin, A.S. (2016). Feature-based sentiment analysis in online Arabic reviews. In Proceedings of 11th International Conference on Computer Engineering & Systems (pp.260–265). IEEE. doi: 10.1109/ICCES.2016.7822011
  2. Akhtar, M. S, Gupta, D., & Ekbal, A. (2017). Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis. Knowledge-Based Systems, 125, 116–135. doi: 10.1016/j.knosys.2017.03.020
  3. Asghar, M.Z., Khan, A., Ahmad, S., Qasim, M., & Khan, I. A (2017). Lexicon-enhanced sentiment analysis framework using rule-based classification scheme. PloS One, 12(2), e0171649. doi: 10.1371/journal.pone.0171649
  4. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016) Enriching word vectors with subword information. arXiv:1607.04606v2.
  5. Contratres, F.G., Alves-Souza, S.N., Filgueiras, L.V.L., & DeSouza, L.S. (2018). Sentiment analysis of social network data for cold-start relief in recommender systems. In Proceedings of World Conference on Information Systems and Technologies (pp.122–132). Springer, Cham. doi: 10.1007/978-3-319-77712-2_12
  6. Endo, D., Saito, M., & Yamamoto. (2006).The extraction of emotional representation by using dependency relation. In Proceedings of Natural Language Processing.
  7. Fernández, A.M., Esuli, A., & Sebastiani, F. (2016). Distributional correspondence indexing for cross-lingual and cross-domain sentiment classification. Journal of Artificial Intelligence Research, 55(1), 131–163. doi: 10.1613/jair.4762
  8. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., & Mikolov, T. (2018). Learning word vectors for 157 languages. In Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018).
  9. Impana, P., & Kallimani, J.S. (2017). Cross-lingual sentiment analysis for Indian regional languages (pp.1–6). In Proceedings of International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques.
  10. Ma, W., & Deng, Y. (2013). New feature weighting calculation method for short text. Journal of Computer Applications, 33(8), 2280–2292.
  11. Manek, A.S., Shenoy, P.D., Mohan, M.C., & Venugopal, K.R. (2016). Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World Wide Web, 20(2), 135–154. doi: 10.1007/s11280-015-0381-x
  12. Nakamura, A. (1979). Kanjo Hyogen Jiten Toukyouto Rokkou Press.
  13. Omar, N., Albared, M., Al-Moslmi, T, &. Al-Shabi, A. (2014) A comparative study of feature selection and machine learning algorithms for Arabic sentiment classification. Information Retrieval Technology, 8870, 429–443. doi: 10.1007/978-3-319-12844-3_37
  14. Parlak, B., & Uysal, A.K. (2018). On Feature weighting and selection for medical document classification. Developments and Advances in Intelligent Systems and Applications (pp. 269–282). Springer, Cham.
  15. Palakvangsa-Na-Ayudhya, S, Sriarunrungreung. V, Thongprasan, P., & Porcharoen, S. (2011) Nebular: A sentiment classification system for the tourism business. In Proceedings of 2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp.293–298). IEEE. doi: 10.1109/JCSSE.2011.5930137
  16. Palaniappan, R., Sundaraj, K., & Sundaraj, S. (2014). A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signal. BMC Bioinformatics, 15(1), 223. doi: 10.1186/1471-2105-15-223
  17. Severyn, A., Moschitti, A., Uryupina, O., Plank, B., & Filippova, K. (2016). Multi-lingual opinion mining on YouTube. Information Processing and Management, 52(1), 46–60. doi: 10.1016/j.ipm.2015.03.002
  18. Sharma, A., & Dey, S. (2012). A comparative study of feature selection and machine learning techniques for sentiment analysis. In Proceedings of the 2012 ACM research in applied computation symposium (pp.1–7). ACM. doi: 10.1145/2401603.2401605
  19. Siddiqua, U.A., Ahsan, T., & Chy, A.N. (2017). Combining a rule-based classifier with weakly supervised learning for twitter sentiment analysis. In Proceedings of International Conference on Innovations in Science (pp.1–4), Engineering and Technology. doi: 10.1109/ICISET. 2016.7856499
  20. Song, W., Cai, Y., Wu, B., & Sun, T. (2012). A new active learning strategy in nearest neighbor classifier. In Proceedings of the International Conference on Machine Learning and Cybernetics (pp.729–734). Xian, China. IEEE. doi: 10.1109/ICMLC.2012.6359015
  21. Soni A K. (2017). Multi-lingual sentiment analysis of Twitter data by using classification algorithms. In Proceedings of 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp.1–5). doi: 10.1109/ICECCT.2017.8117884
  22. Vulic, I., Smet, W.D., Tang, J., & Moens, MF. (2015). Probabilistic topic modeling in multilingual settings: An overview of its methodology and applications. Information Processing & Management 51(1), 111–147. doi: 10.1016/j.ipm.2014.08.003
  23. Xia, R., Xu, F., Yu, J., Qi, Y. & Cambria, E (2016). Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis. Information Processing & Management, 52(1), 36–45. doi: 10.1016/j.ipm.2015.04.003
  24. Xiao, X., Lu, J., Yu, L., & Gong, H. (2015). Research on feature selection algorithm based on the lowest term frequency of CHI. Journal of Southwest University (Natural Science Edition), 37(6), 137–142.
  25. Xu, F.Y., & Luo, Z.S. (2015). An improved approach to term weighting in automated text classification. Computer Engineering and Application, 4(1), 181–184.
  26. Yang, W., Song, J.J., & Tang, J.Q. (2013). A study on the classification approach for Chinese MicroBlog subjective and objective sentences. Journal of Chongqing University of Technology (Natural Science), 27(1), 51–56.
  27. Yang, Y.M., & Pedersen, J.O. (1997). A comparative study on feature selection in text categorization. In Proceedings of the 14th International Conference on Machine Learning (pp. 412–420). Nashville, TN, USA.
  28. Zhang, C.Z., & Zhou, Q.Q. (2018). Online investigation of users’ attitudes using automatic question answering. Online Information Review, 2018, 42(3), 419–435. doi: 10.1108/OIR-10-2016-0299
  29. Zhang, L. (2015) Aspect: eight summary of “Internet + tourism” industry trend in 2016. Retrieved from http://mi.chinabyte.com/299/13641299.html
  30. Zhang, L., Jiang, L., Li, C., & Kong, G. (2016). Two feature weighting approaches for naive Bayes text classifiers. Knowledge-Based Systems, 100, 137–144. doi: 10.1016/j.knosys.2016.02.017
  31. Zheng, L., Wang, H., & Gao, S. (2015). Sentimental feature selection for sentiment analysis of Chinese online. International Journal of Machine Learning and Cybernetics, 9(1), 75–84.
  32. Zhou, G.Y., Zhu Z.Y., He, T.T., & Hu, X.T. (2016). Cross-lingual sentiment classification with stacked auto-encoders. Knowledge and Information Systems, 47(1), 27–44. doi: 10.1007/s10115-015-0849-0
  33. Zin, H.M., Mustapha, N., Murad, M.A.A. & Sharef, N.M. (2018). Term weighting scheme effect in sentiment analysis of online movie reviews. Advanced Science Letters, 24(2), 933–937.
DOI: https://doi.org/10.2478/jdis-2019-0005 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 89 - 113
Submitted on: Oct 15, 2018
Accepted on: Jan 8, 2019
Published on: Feb 21, 2019
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Chuanming Yu, Xingyu Zhu, Bolin Feng, Lin Cai, Lu An, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.