Have a personal or library account? Click to login
Identification and Prediction of Interdisciplinary Research Topics: A Study Based on the Concept Lattice Theory Cover

Identification and Prediction of Interdisciplinary Research Topics: A Study Based on the Concept Lattice Theory

By: Haiyun Xu,  Chao Wang,  Kun Dong and  Zenghui Yue  
Open Access
|Feb 2019

References

  1. Belohlavek, R., & Vychodil, V. (2009). Formal concept analysis with background knowledge: Attribute priorities. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(4), 399–409.
  2. Carpineto, C., & Romano, G. (2004). Concept data analysis: Theory and applications. John Wiley & Sons.
  3. Chang, Y.W., & Huang, M.H. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of the American Society for Information Science and Technology, 63(1), 22–33.
  4. Cimiano, P., Hotho, A., & Staab, S. (2005). Learning concept hierarchies from text corpora using formal concept analysis. Journal of Artificial Intelligence Research, 24, 305–339.
  5. Dong, K., Xu, H., Luo, R., Wei, L., & Fang, S. (2018). An integrated method for interdisciplinary topic identification and prediction: A case study on information science and library science. Scientometrics, 115(2), 849–868.
  6. Ganter, B., & Wille, R. (2012). Formal concept analysis: Mathematical foundations. Springer Science & Business Media.
  7. Ganter, B., & Wille, R. (1997). Applied lattice theory: Formal concept analysis. In General Lattice Theory, G. Grätzer editor, Birkhäuser.
  8. Gao, J.F. (2015). Coupling network literature knowledge discovery based on concept lattice. Library science research, 56(17), 122–125.
  9. Hammarfelt, B. (2011). Interdisciplinarity and the intellectual base of literature studies: Citation analysis of highly cited monographs. Scientometrics, 86(3), 705–725.
  10. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265–269.
  11. Jia, C.Y., & Ni, X.J. (2003). Association rule mining: A survey. Computer Science, 30(4), 145–148.
  12. Klein, J.T. (2000). A conceptual vocabulary of interdisciplinary science. Practising interdisciplinarity, 3–24.
  13. Kumar, C. (2011). Knowledge discovery in data using formal concept analysis and random projections. International Journal of Applied Mathematics and Computer Science, 21(4), 745–756.
  14. Lahcen, B., & Kwuida, L. (2010). Lattice miner: A tool for concept lattice construction and exploration. Suplementary Proceeding of International Conference on Formal concept analysis (ICFCA’10).
  15. Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.
  16. Leydesdorff, L., Rafols, I., & Chen, C. (2013). Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal–journal citations. Journal of the American Society for Information Science and Technology, 64(12), 2573–2586.
  17. Li, C.L., Liu, F.F., & Guo, F.J. (2013). Analysis on interdisciplinary research topics with cfinder of overlapping communities visualization software—taking the information science and computer science for example. Library and Information Service, 57(7), 75–80.
  18. Liu, P., & Wang, Z. (2012). A new method for detecting or ganizational knowledge structure: Author keyword coupling analysis based on FCA. Library and Information Service, 56(22), 121–128.
  19. Liu, P., & Wu, Q. (2014). Detecting disciplinary knowledge structure based on formal concept analysis: An empirical investigation on library and information science, 58(18), 50–65.
  20. Min, C., & Sun, J.J. (2014). Clustering analysis on discipline-crossing research hotspots: An example of library and information science and journalism and communication studies. Library and Information Service, 58(1), 109–116.
  21. Porter, A.L., Roessner, J.D., & Heberger, A.E. (2008). How interdisciplinary is a given body of research. Research Evaluation, 17(4), 273–282.
  22. Porter A, Zhang Y. Text clumping for technical intelligence. Theory & Applications for Advanced Text Mining, 2012.
  23. Reuters, T. (2016). Science citation index expanded. http://ip-science.thomsonreuters.com/mjl/scope/scope_scie/
  24. Schummer, J. (2004). Multidisciplinarity, interdisciplinarity and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.
  25. Shao, Z.Y., & Li, X.X. (2015). Detecting interdisciplinary knowledge structure based on concept lattice and bibliographic coupling. Library and Information Service, 59(8), 78–86.
  26. Stumme, G. (2009). Formal concept analysis. In: Staab S., Studer R. (eds) Handbook on Ontologies. Springer Berlin Heidelberg, 177–199.
  27. Teng, G.Q. (2012). Research on knowledge organization based on concept lattice of digital library. Changchun: Jilin University.
  28. Teng, G.Q., & Bi, Q. (2010). Comparative study on ConExp and lattice miner. New Technology of Library and Information Service, 26(10), 17–22.
  29. Teng, G.Q, Bi, Q., & Bao, Y.L. (2011). An analysis on keywords of literature based on granularity concept analysis—A case study of ontology. New Technology of Library and Information Service. 27(9), 1–6.
  30. Derwent Data Analyzer. (2018). Retrieved from https://www.thevantagepoint.com/tda-home.html
  31. Venter, F.J., Oosthuizen, G.D., & Roos, J.D. (1997). Knowledge discovery in databases using lattices. Expert Systems With Applications, 13(4), 259–264.
  32. Wille, R. (2002). Why can concept lattices support knowledge discovery in databases? Journal of Experimental & Theoretical Artificial Intelligence, 14(2–3), 81–92.
  33. Wille, R. (2009). Restructuring lattice theory: An approach based on hierarchies of concepts. Formal Concept Analysis. Springer Berlin Heidelberg.
  34. Xu, H.Y., Guo, T., Yue, Z.H., Ru, L.J., & Fang, S. (2016). Interdisciplinary topics of information science: A study based on the terms interdisciplinarity index series. Scientometrics, 106(2), 583–601.
  35. Xu, H.Y., Liu, C.J., Lei, B.X., Li, H.L., & Fang, S. (2014). Measurement visualization and application of interdisciplinary research. Library and Information Service, 58(12), 95–101.
  36. Xu, H.Y., Yin, C.X., Guo, T., Tan, X., & Fang, S. (2015). Interdisciplinary research review. Library and Information Service, 59(5), 119–127.
  37. Serhiy, A. Yevtushenko (2000). System of data analysis “Concept Explorer”. Proceedings of the 7th national conference on Artificial Intelligence KII-2000, p. 127–134.
  38. Zhang, H.L., Wei, J.X., Du, Z.D., Liu, X., YAN, S., Feng, Z., Li, X.D., & Feng, X.F. (2011). Interdisciplinary research based on social complex network. Journal of Intelligence, 30(10), 25–29.
  39. Zhang, Z.Q., & Fan, S.P. (2015). On the emergence and development of subject informatics. Journal of The China Society for Scientific and Technical Information, 34(10), 1011–1023.
DOI: https://doi.org/10.2478/jdis-2019-0004 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 60 - 88
Submitted on: Nov 4, 2018
Accepted on: Jan 16, 2019
Published on: Feb 21, 2019
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Haiyun Xu, Chao Wang, Kun Dong, Zenghui Yue, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.