Have a personal or library account? Click to login
The Role of the Mechanical Characteristics and Microstructure of the Porcine Aortic Wall: Implications for Abdominal Aortic Aneurysm Rupture Risk Cover

The Role of the Mechanical Characteristics and Microstructure of the Porcine Aortic Wall: Implications for Abdominal Aortic Aneurysm Rupture Risk

Open Access
|Mar 2024

References

  1. Wanhainen A, Verzini F, Herzeele IV, et al. Editor's Choice – European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. European Journal of Vascular and Endovascular Surgery. 2019;57(1):8–93. doi: 10.1016/j.ejvs.2018.09.020
  2. Filep RC, Constantin C, Arbanasi EM, Muresan AV, Russu E, Marginean L. Endovascular treatment of an aneurysm associated with fenestration of the supraclinoid internal carotid artery: Case report and review of the literature. Front Neurol. 2022;13:966642. doi: 10.3389/fneur.2022.966642
  3. Mărginean L, Mureșan AV, Arbănași EM, et al. Transarterial Embolization of Ruptured Pancreaticoduodenal Artery Pseudoaneurysm Related to Chronic Pancreatitis. Diagnostics. 2023;13(6):1090. doi: 10.3390/diagnostics13061090
  4. Arbanasi EM, Russu E, Muresan AV, Arbanasi EM, Kaller R. Ulnar-basilic arteriovenous fistula with multilocular gigantic aneurysmal dilatation: a case report. Acta Marisiensis - Seria Medica. Published online October 28, 2021. doi: 10.2478/amma-2021-0035
  5. Kaller R, Mureșan AV, Arbănași EM, et al. Uncommon Surgical Management by AVF between the Great Saphenous Vein and Anterior Tibial Artery for Old Radiocephalic AVF Failure. Life. 2022;12(4):529. doi: 10.3390/life12040529
  6. Russu E, Mureșan AV, Kaller R, et al. Innovative Technical Solution Using the Renal Artery Stump after Nephrectomy as an Inflow Artery for Lower Limb Revascularization—A Case Report. Front Surg. 2022;9:864846. doi: 10.3389/fsurg.2022.864846
  7. Arbănași EM, Mureșan AV, Coșarcă CM, et al. Computed Tomography Angiography Markers and Intraluminal Thrombus Morphology as Predictors of Abdominal Aortic Aneurysm Rupture. International Journal of Environmental Research and Public Health. 2022;19(23):15961. doi: 10.3390/ijerph192315961
  8. Hoornweg LL, Storm-Versloot MN, Ubbink DT, Koelemay MJW, Legemate DA, Balm R. Meta analysis on mortality of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2008;35(5):558–570. doi: 10.1016/j.ejvs.2007.11.019
  9. Karthikesalingam A, Holt PJ, Vidal-Diez A, et al. Mortality from ruptured abdominal aortic aneurysms: clinical lessons from a comparison of outcomes in England and the USA. Lancet. 2014;383(9921):963–969. doi: 10.1016/S0140-6736(14)60109-4
  10. Noel AA, Gloviczki P, Cherry KJ, et al. Ruptured abdominal aortic aneurysms: the excessive mortality rate of conventional repair. J Vasc Surg. 2001;34(1):41–46. doi: 10.1067/mva.2001.115604
  11. Myneni M, Sridhar RL, Rajagopal KR, Benjamin CC. Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta. Ann Biomed Eng. 2022;50(4):452–466. doi: 10.1007/s10439-022-02931-2
  12. Zou Y, Zhang Y. Mechanical evaluation of decellularized porcine thoracic aorta. J Surg Res. 2012;175(2):359–368. doi: 10.1016/j.jss.2011.03.070
  13. Mattson JM, Zhang Y. Structural and Functional Differences Between Porcine Aorta and Vena Cava. J Biomech Eng. 2017;139(7):0710071-0710078. doi: 10.1115/1.4036261
  14. Iliopoulos DC, Deveja RP, Kritharis EP, et al. Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms. Med Eng Phys. 2009;31(1):1–9. doi: 10.1016/j.medengphy.2008.03.002
  15. Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 2006;39(7):1324–1334. doi: 10.1016/j.jbiomech.2005.03.003
  16. Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface. 2012;9(71):1275–1286. doi: 10.1098/rsif.2011.0727
  17. Holzapfel GA, Gasser TC, Ogden RW. A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. Journal of Elasticity. 2000;61(1):1–48. doi: 10.1023/A:1010835316564
  18. Goldfinger JZ, Halperin JL, Marin ML, Stewart AS, Eagle KA, Fuster V. Thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2014;64(16):1725–1739. doi: 10.1016/j.jacc.2014.08.025
  19. Niestrawska JA, Regitnig P, Viertler C, Cohnert TU, Babu AR, Holzapfel GA. The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms. Acta Biomater. 2019;88:149–161. doi: 10.1016/j.actbio.2019.01.070
  20. Pape LA, Tsai TT, Isselbacher EM, et al. Aortic diameter >or = 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2007;116(10):1120–1127. doi: 10.1161/CIRCULATIONAHA.107.702720
  21. Rylski B, Branchetti E, Bavaria JE, et al. Modeling of predissection aortic size in acute type A dissection: More than 90% fail to meet the guidelines for elective ascending replacement. J Thorac Cardiovasc Surg. 2014;148(3):944–948.e1. doi: 10.1016/j.jtcvs.2014.05.050
  22. Phillippi JA, Pasta S, Vorp DA. Biomechanics and Pathobiology of Aortic Aneurysms. In: McGloughlin T, ed. Biomechanics and Mechanobiology of Aneurysms. Studies in Mechanobiology, Tissue Engineering and Biomaterials. Springer; 2011:67–118. doi: 10.1007/8415_2011_84
  23. Columbo JA, Scali ST, Jacobs BN, et al. Size thresholds for repair of abdominal aortic aneurysms warrant reconsideration. J Vasc Surg. Published online January 21, 2024:S0741-5214(24)00077-6. doi: 10.1016/j.jvs.2024.01.017
  24. Vorp DA. Biomechanics of abdominal aortic aneurysm. J Biomech. 2007;40(9):1887–1902. doi: 10.1016/j.jbiomech.2006.09.003
  25. Arbănaşi EM, Russu E, Arbănaşi EM, et al. Effect of Ultraviolet Radiation on the Enzymolytic and Biomechanical Profiles of Abdominal Aortic Adventitia Tissue. Journal of Clinical Medicine. 2024;13(2):633. doi: 10.3390/jcm13020633
  26. Chirila TV, Suzuki S. Ultraviolet-induced mechanical augmentation of the degraded porcine aortic adventitia: Its significance for preventing aneurysmal rupture. Global Translational Medicine. 2023;2(2):0897. doi: 10.36922/gtm.0897
  27. Chirila TV, Suzuki S. Photocrosslinking of Adventitial Collagen in the Porcine Abdominal Aorta: A Preliminary Approach to a Strategy for Prevention of Aneurysmal Rupture. Designs. 2022;6(1):5. doi: 10.3390/designs6010005
  28. Chirila TV, Suzuki S. Effects of Ultraviolet-A Radiation on Enzymatically Degraded Tunica Adventitia of the Porcine Abdominal Aorta. Biomedical Materials & Devices. Published online April 28, 2023. doi: 10.1007/s44174-023-00080-1
  29. Arbănaşi EM, Suzuki S, Ciucanu CC, et al. Ex-vivo Mechanical Augmentation of Human Saphenous Vein Graft By UV-A Irradiation in Emergency Vascular Reconstruction – Preliminary Results. Journal of Cardiovascular Emergencies. 2023;9(3):59–64.
  30. Duprey A, Trabelsi O, Vola M, Favre JP, Avril S. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 2016;42:273–285. doi: 10.1016/j.actbio.2016.06.028
  31. Maher E, Early M, Creane A, Lally C, Kelly DJ. Site specific inelasticity of arterial tissue. J Biomech. 2012;45(8):1393–1399. doi: 10.1016/j.jbiomech.2012.02.026
  32. Weisbecker H, Pierce DM, Regitnig P, Holzapfel GA. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J Mech Behav Biomed Mater. 2012;12:93–106. doi: 10.1016/j.jmbbm.2012.03.012
  33. Noble C, Smulders N, Green NH, et al. Creating a model of diseased artery damage and failure from healthy porcine aorta. J Mech Behav Biomed Mater. 2016;60:378–393. doi: 10.1016/j.jmbbm.2016.02.018
  34. García A, Martínez MA, Peña E. Determination and modeling of the inelasticity over the length of the porcine carotid artery. J Biomech Eng. 2013;135(3):31004. doi: 10.1115/1.4023371
  35. Peña JA, Martínez MA, Peña E. Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach. Biomech Model Mechanobiol. 2019;18(6):1709–1730. doi: 10.1007/s10237-019-01170-0
  36. Han HC, Fung YC. Longitudinal strain of canine and porcine aortas. J Biomech. 1995;28(5):637–641. doi: 10.1016/0021-9290(94)00091-h
  37. Kim J, Hong JW, Baek S. Longitudinal differences in the mechanical properties of the thoracic aorta depend on circumferential regions. J Biomed Mater Res A. 2013;101(5):1525–1529. doi: 10.1002/jbm.a.34445
  38. Peña JA, Corral V, Martínez MA, Peña E. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation. J Mech Behav Biomed Mater. 2018;77:434–445. doi: 10.1016/j.jmbbm.2017.10.007
  39. Peña JA, Martínez MA, Peña E. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J Mech Behav Biomed Mater. 2015;50:55–69. doi: 10.1016/j.jmbbm.2015.05.024
DOI: https://doi.org/10.2478/jce-2024-0007 | Journal eISSN: 2457-5518 | Journal ISSN: 2457-550X
Language: English
Page range: 13 - 19
Submitted on: Dec 20, 2023
Accepted on: Feb 5, 2024
Published on: Mar 21, 2024
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Adrian Vasile Mureșan, Emil-Marian Arbănași, Eliza Russu, Reka Kaller, Claudiu Constantin Ciucanu, Alexandru Petru Ion, Andrei Bogdan Cordoș, Marius Harpa, Eliza-Mihaela Arbănași, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.