Have a personal or library account? Click to login
Cardiac Biomarkers in 2022 – a Vital Tool for Emergency Care Cover

Cardiac Biomarkers in 2022 – a Vital Tool for Emergency Care

Open Access
|Jan 2023

References

  1. 1. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289-1367. doi: 10.1093/eurheartj/ehaa575. Erratum in: Eur Heart J. 2021;42:1908. Erratum in: Eur Heart J. 2021;42:1925.32860058
  2. 2. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth Universal Definition of Myocardial Infarction. J Am Coll Cardiol. 2018;72:2231-2264. doi: 10.1016/j.jacc.2018.08.1038.30153967
  3. 3. Jaffe AS, Ordonez-Llanos J. High-sensitivity cardiac troponin: from theory to clinical practice. Rev Esp Cardiol (Engl Ed). 2013;66:687-691. doi: 10.1016/j.rec.2013.04.020.24773672
  4. 4. Arslan M, Dedic A, Boersma E, Dubois EA. Serial high-sensitivity cardiac troponin T measurements to rule out acute myocardial infarction and a single high baseline measurement for swift rule-in: A systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care. 2020;9:14-22. doi: 10.1177/2048872618819421.700855130618277
  5. 5. Lazar DR, Lazar FL, Homorodean C, et al. High-Sensitivity Troponin: A Review on Characteristics, Assessment, and Clinical Implications. Dis Markers. 2022;2022:9713326. doi: 10.1155/2022/9713326.896560235371340
  6. 6. Hinton J, Gabara L, Curzen N. Is the true clinical value of high-sensitivity troponins as a biomarker of risk? The concept that detection of high-sensitivity troponin ‘never means nothing’. Expert Rev Cardiovasc Ther. 2020;18:843-857. doi: 10.1080/14779072.2020.1828063.32966128
  7. 7. Giannitsis E, Gopi V. Biomarkers for infarct diagnosis and rapid rule-out/rule-in of acute myocardial infarction. Herz. 2020;45:509-519. English. doi: 10.1007/s00059-020-04943-x.32468140
  8. 8. Sandoval Y, Apple FS, Mahler SA, et al. High-Sensitivity Cardiac Troponin and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guidelines for the Evaluation and Diagnosis of Acute Chest Pain. Circulation. 2022;146:569-581. doi: 10.1161/CIRCULATIONAHA.122.059678.35775423
  9. 9. Mair J, Jaffe A, Lindahl B, et al. The clinical approach to diagnosing peri-procedural myocardial infarction after percutaneous coronary interventions according to the fourth universal definition of myocardial infarction – from the study group on biomarkers of the European Society of Cardiology (ESC) Association for Acute CardioVascular Care (ACVC). Biomarkers. 2022;27:407-417. doi: 10.1080/1354750X.2022.2055792.934493435603440
  10. 10. Kankra M, Mehta A, Sawhney JPS, et al. Improving the ACS Triage-Using High Sensitivity TroponinI and Copeptin for Early ‘Rule-Out’ of AMI. Indian J Clin Biochem. 2022;37:449-457. doi: 10.1007/s12291-021-01015-7.957383936262786
  11. 11. Giannitsis E, Garfias-Veitl T, Slagman A, et al. Biomarkers-in-Cardiology 8 RE-VISITED-Consistent Safety of Early Discharge with a Dual Marker Strategy Combining a Normal hs-cTnT with a Normal Copeptin in Low-to-Intermediate Risk Patients with Suspected Acute Coronary Syndrome – A Secondary Analysis of the Randomized Biomarkers-in-Cardiology 8 Trial. Cells. 2022;11:211. doi: 10.3390/cells11020211.877359235053326
  12. 12. Elseidy SA, Awad AK, Mandal D, Vorla M, Elkheshen A, Mohamad T. Copeptin plus troponin in the rapid rule out of acute myocardial infarction and prognostic value on post-myocardial infarction outcomes: a systematic review and diagnostic accuracy study. Heart Vessels. 2023;38:1-7. doi: 10.1007/s00380-022-02123-x.35794488
  13. 13. Ozden O, Yesildas C, Demir M, et al. A Novel Indicator of Myocardial Injury after Acute Myocardial Infarction: ‘DPP-3’. Clin Appl Thromb Hemost. 2022;28:10760296221145174. doi: 10.1177/10760296221145174.975634936514254
  14. 14. Udaya R, Sivakanesan R. Synopsis of Biomarkers of Atheromatous Plaque Formation, Rupture and Thrombosis in the Diagnosis of Acute Coronary Syndromes. Curr Cardiol Rev. 2022;18:53-62. doi: 10.2174/1573403X18666220411113450.35410616
  15. 15. Peacock WF, Maisel AS, Mueller C, et al. Finding acute coronary syndrome with serial troponin testing for rapid assessment of cardiac ischemic symptoms (FAST-TRAC): a study protocol. Clin Exp Emerg Med. 2022;9:140-145. doi: 10.15441/ceem.21.154.928888435843615
  16. 16. Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine – a review. Mikrochim Acta. 2022;189:142. doi: 10.1007/s00604-022-05186-9.891782935279780
  17. 17. Kleemeier S, Abildgaard A, Ladefoged SA, Thorsted Sørensen J, Stengaard C, Adelborg K. High-sensitivity troponin T and I in patients suspected of acute myocardial infarction. Scand J Clin Lab Invest. 2022;82:96-103. doi: 10.1080/00365513.2022.2033310.35253566
  18. 18. Younis A, Farooq S, Bisognano JD, et al. Outcomes Associated with Introduction of the 5th Generation High-Sensitivity Cardiac Troponin in Patients Presenting with Cardiovascular Disorders. J Emerg Med. 2022;62:657-667. doi: 10.1016/j.jemermed.2022.01.011.35382958
  19. 19. Bruinen AL, Frenk LDS, de Theije F, et al. Point-of-care high-sensitivity troponin-I analysis in capillary blood for acute coronary syndrome diagnostics. Clin Chem Lab Med. 2022;60:1669-1674. doi: 10.1515/cclm-2022-0268.35858956
  20. 20. Tveit SH, Myhre PL, Hanssen TA, et al. Cardiac troponin I and T for ruling out coronary artery disease in suspected chronic coronary syndrome. Sci Rep. 2022;12:945. doi: 10.1038/s41598-022-04850-7.876656435042885
  21. 21. Ravanavena A, Ravindra C, Igweonu-Nwakile EO, et al. Absolute Versus Relative Changes in Cardiac Troponins in the Diagnosis of Myocardial Infarction: A Systematic Review and Meta-Analysis. Cureus. 2022;14:e27414. doi: 10.7759/cureus.27414.933878335915617
  22. 22. Juknevičienė R, Juknevičius V, Jasiūnas E, et al. Chest pain in the emergency department: From score to core – A prospective clinical study. Medicine (Baltimore). 2022;101:e29579. doi: 10.1097/MD.0000000000029579.930235535866759
  23. 23. Lee KK, Bularga A, O’Brien R, et al. Troponin-Guided Coronary Computed Tomographic Angiography After Exclusion of Myocardial Infarction. J Am Coll Cardiol. 2021;78:1407-1417. doi: 10.1016/j.jacc.2021.07.055.848279334593122
  24. 24. Butt JH, Kofoed KF, Kelbæk H, et al. Importance of Risk Assessment in Timing of Invasive Coronary Evaluation and Treatment of Patients With Non-ST-Segment-Elevation Acute Coronary Syndrome: Insights From the VERDICT Trial. J Am Heart Assoc. 2021;10:e022333. doi: 10.1161/JAHA.121.022333.864912434585591
  25. 25. Gray AJ, Roobottom C, Smith JE, et al. Early computed tomography coronary angiography in adults presenting with suspected acute coronary syndrome: the RAPID-CTCA RCT. Health Technol Assess. 2022;26:1-114. doi: 10.3310/IRWI5180.36062819
  26. 26. Mehta P, McDonald S, Hirani R, Good D, Diercks D. Major adverse cardiac events after emergency department evaluation of chest pain patients with advanced testing: Systematic review and meta-analysis. Acad Emerg Med. 2022;29:748-764. doi: 10.1111/acem.14407.34741781
  27. 27. Williams MGL, Liang K, De Garate E, et al. Peak Troponin and CMR to Guide Management in Suspected ACS and Nonobstructive Coronary Arteries. JACC Cardiovasc Imaging. 2022;15:1578-1587. doi: 10.1016/j.jcmg.2022.03.017.36075617
  28. 28. Emakhu J, Monplaisir L, Aguwa C, et al. Acute coronary syndrome prediction in emergency care: A machine learning approach. Comput Methods Programs Biomed. 2022;225:107080. doi: 10.1016/j.cmpb.2022.107080.36037605
  29. 29. Ke J, Chen Y, Wang X, et al. Machine learning-based inhospital mortality prediction models for patients with acute coronary syndrome. Am J Emerg Med. 2022;53:127-134. doi: 10.1016/j.ajem.2021.12.070.35033770
  30. 30. Doudesis D, Lee KK, Yang J, et al. Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis. Lancet Digit Health. 2022;4:e300-e308. doi: 10.1016/S2589-7500(22)00025-5.905233135461689
  31. 31. Mohan N, Shivakumar KM, Kl CK. Correlation of Troponin I with Left Ventricular Ejection Fraction in Acute Coronary Syndrome. J Assoc Physicians India. 2022;70:11-12. PMID: 35443386.
  32. 32. Sadiq S, Ijaz A, Dawood MM, Sadiq T. B-type natriuretic peptide as diagnostic and prognostic marker in various forms of acute coronary syndrome. Pak J Med Sci. 2022;38:970-975. doi: 10.12669/pjms.38.4.4910.912192635634594
  33. 33. Kavsak PA, Mondoux SE, Hewitt MK, Ainsworth C, Hill S, Worster A. Can the Addition of NT-proBNP and Glucose Measurements Improve the Prognostication of High-Sensitivity Cardiac Troponin Measurements for Patients with Suspected Acute Coronary Syndrome? J Cardiovasc Dev Dis. 2021;8:106. doi: 10.3390/jcdd8090106.847114934564124
  34. 34. Ledwoch J, Schneider A, Leidgschwendner K, et al. Diagnostic Accuracy of High-Sensitive Troponin for the Identification of Myocardial Infarction in Patients Presenting with Acute Heart Failure. J Emerg Med. 2022;62:359-367. doi: 10.1016/j.jemermed.2021.11.013.35065860
  35. 35. Fermann GJ, Schrock JW, Levy PD, et al. Troponin is unrelated to outcomes in heart failure patients discharged from the emergency department. J Am Coll Emerg Physicians Open. 2022;3:e12695. doi: 10.1002/emp2.12695.899461635434709
  36. 36. Ratmann PD, Boeddinghaus J, Nestelberger T, et al. Extending the no objective testing rules to patients triaged by the European Society of Cardiology 0/1-hour algorithms. Eur Heart J Acute Cardiovasc Care. 2022;11:834-840. doi: 10.1093/ehjacc/zuac120.36179255
  37. 37. Wang JL, Guo CY, Li HW, Zhao XQ, Zhao SM. Prognostic Value of NT-proBNP in Patients With Successful PCI for ACS and Normal Left Ventricular Ejection Fraction. Am J Med Sci. 2022;363:333-341. doi: 10.1016/j.amjms.2021.10.017.34986361
  38. 38. Galvani M, Ottani F, Oltrona L, et al. N-terminal pro-brain natriuretic peptide on admission has prognostic value across the whole spectrum of acute coronary syndromes. Circulation. 2004;110:128-34. doi: 10.1161/01.CIR.0000134480.06723.D8.15197143
  39. 39. Lu PJ, Gong XW, Liu Y, et al. Optimization of GRACE Risk Stratification by N-Terminal Pro-B-type Natriuretic Peptide Combined With D-Dimer in Patients With Non-ST-Elevation Myocardial Infarction. Am J Cardiol. 2021;140:13-19. doi: 10.1016/j.amjcard.2020.10.050.33159905
  40. 40. McLeod P, Coffey S, Sneddon K, Williams M, Kerr A, Pemberton J. Clinically Acquired High Sensitivity Cardiac Troponin T is a Poor Predictor of Reduced Left Ventricular Ejection Fraction After ST Elevation Myocardial Infarction: A National Cohort Study-ANZACS-QI 65. Heart Lung Circ. 2022;31:1513-1523. doi: 10.1016/j.hlc.2022.07.014.36041986
  41. 41. Brzezinski RY, Melloul A, Berliner S, et al. Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT). J Clin Med. 2022;11:2453. doi: 10.3390/jcm11092453.910504435566579
  42. 42. Kaura A, Hartley A, Panoulas V, et al. Mortality risk prediction of high-sensitivity C-reactive protein in suspected acute coronary syndrome: A cohort study. PLoS Med. 2022;19:e1003911. doi: 10.1371/journal.pmed.1003911.886328235192610
  43. 43. Mustafic S, Ibralic AM, Loncar D. Association of Inflammatory and Hemostatic Parameters With Values of High Sensitive Troponin in Patients With Acute Coronary Syndrome. Med Arch. 2022;76:84-89. doi: 10.5455/medarh.2022.76.84-89.923346335774044
  44. 44. Tsai MK, Lai CH, Hung CL, Wu KY. Troponin I Cutoff for Non-ST-Segment Elevation Myocardial Infarction in Sepsis. Mediators Inflamm. 2022;2022:5331474. doi: 10.1155/2022/5331474.916882435677736
  45. 45. Gallacher PJ, Miller-Hodges E, Shah ASV, et al. High-sensitivity cardiac troponin and the diagnosis of myocardial infarction in patients with kidney impairment. Kidney Int. 2022;102:149-159. doi: 10.1016/j.kint.2022.02.019.35271932
  46. 46. Wan Nur Aimi WMZ, Noorazliyana S, Tuan Salwani TI, Adlin Zafrulan Z, Najib Majdi Y, Noor Azlin Azraini CS. Elevation of Highly Sensitive Cardiac Troponin T Among End-Stage Renal Disease Patients Without Acute Coronary Syndrome. Malays J Med Sci. 2021;28:64-71. doi: 10.21315/mjms2021.28.5.6.879397335115888
  47. 47. Ajie OI, Azinge EC, Bello BT, Oshodi TA, Soriyan OO, Udenze IC. Clinical Significance of Elevated Levels of Cardiac Troponin T in Patients with Chronic Kidney Disease at Lagos University Teaching Hospital, Lagos. West Afr J Med. 2022;39:3-10.10.55891/wajm.v39i1.85
  48. 48. Vitolo M, Malavasi VL, Proietti M, et al. Cardiac troponins and adverse outcomes in European patients with atrial fibrillation: A report from the ESC-EHRA EORP atrial fibrillation general long-term registry. Eur J Intern Med. 2022;99:45-56. doi: 10.1016/j.ejim.2022.01.025.35177307
  49. 49. Koechlin L, Boeddinghaus J, Nestelberger T, et al. Lower diagnostic accuracy of hs-cTnI in patients with prior coronary artery bypass grafting. Int J Cardiol. 2022;354:1-6. doi: 10.1016/j.ijcard.2022.02.025.35189168
  50. 50. Ticinesi A, Nouvenne A, Cerundolo N, et al. Accounting for frailty and multimorbidity when interpreting high-sensitivity troponin I tests in oldest old. J Am Geriatr Soc. 2022;70:549-559. doi: 10.1111/jgs.17566.929912034792185
  51. 51. Khetpal V, Berkowitz J, Vijayakumar S, et al. Long-term Cardiovascular Manifestations and Complications of COVID-19: Spectrum and Approach to Diagnosis and Management. R I Med J (2013). 2022;105:16-22.
  52. 52. Iorio A, Lombardi CM, Specchia C, et al. Combined Role of Troponin and Natriuretic Peptides Measurements in Patients With Covid-19 (from the Cardio-COVID-Italy Multicenter Study). Am J Cardiol. 2022;167:125-132. doi: 10.1016/j.amjcard.2021.11.054.876795335063263
  53. 53. Skoda R, Juhász V, Dohy Z, et al. The effect of COVID-19 pandemic on myocardial infarction care and on its prognosis – Experience at a high volume Hungarian cardiovascular center. Physiol Int. 2022;109:419-426. doi: 10.1556/2060.2022.00083.36223273
  54. 54. Roos A, Edgren G, Holzmann MJ. Temporal Changes of Stable High-Sensitivity Cardiac Troponin T Levels and Prognosis. J Am Heart Assoc. 2022;11:e025082. doi: 10.1161/JAHA.121.025082.923869835621209
  55. 55. Biener M, Giannitsis E, Hogrefe K, et al. Prognostic value of changes in high-sensitivity cardiac troponin T beyond biological variation in stable outpatients with cardiovascular disease: a validation study. Clin Res Cardiol. 2022;111:333-342. doi: 10.1007/s00392-021-01952-6.887312834694435
  56. 56. Chapman AR, Lee KK, McAllister DA, et al. Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome. JAMA. 2017;318:1913-1924. doi: 10.1001/jama.2017.17488. Erratum in: JAMA. 2018;319:1168. Soerensen NA [corrected to Sorensen NA].571029329127948
  57. 57. Horiuchi Y, Wettersten N, Patel MP, et al. Prognosis is worse with elevated cardiac troponin in nonacute coronary syndrome compared with acute coronary syndrome. Coron Artery Dis. 2022;33:376-384. doi: 10.1097/MCA.0000000000001135.35880560
  58. 58. Hartikainen TS, Goßling A, Sörensen NA, et al. Prognostic Implications of a Second Peak of High-Sensitivity Troponin T After Myocardial Infarction. Front Cardiovasc Med. 2022;8:780198. doi: 10.3389/fcvm.2021.780198.884176735174220
  59. 59. Rubini Gimenez M, Twerenbold R, Jaeger C, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am J Med. 2015;128:861-870.e4. doi: 10.1016/j.amjmed.2015.01.046.25840034
  60. 60. Twerenbold R, Costabel JP, Nestelberger T, et al. Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction. J Am Coll Cardiol. 2019;74:483-494. doi: 10.1016/j.jacc.2019.05.046.31345421
  61. 61. Nomura O, Hashiba K, Kikuchi M, et al. Performance of the 0-Hour/1-Hour Algorithm for Diagnosing Myocardial Infarction in Patients With Chest Pain in the Emergency Department – A Systematic Review and Meta-Analysis. Circ Rep. 2022;4:241-247. doi: 10.1253/circrep.CR-22-0001.916851135774074
  62. 62. Khan A, Saleem MS, Willner KD, et al. Association of Chest Pain Protocol-Discordant Discharge With Outcomes Among Emergency Department Patients With Modest Elevations of High-Sensitivity Troponin. JAMA Netw Open. 2022;5:e2226809. doi: 10.1001/jamanetworkopen.2022.26809.937974435969395
  63. 63. van den Berg P, Collinson P, Morris N, Body R. Diagnostic accuracy of a high-sensitivity troponin I assay and external validation of 0/3 h rule out strategies. Eur Heart J Acute Cardiovasc Care. 2022;11:127-136. doi: 10.1093/ehjacc/zuab102.35136994
  64. 64. Breuckmann F, Settelmeier S, Rassaf T, et al. Survey of clinical practice pattern in Germany’s certified chest pain units: Adherence to the European Society of Cardiology guidelines on non-ST-segment elevation acute coronary syndrome. Herz. 2022;47:543-552. doi: 10.1007/s00059-021-05079-2.857764534755215
  65. 65. Hariri E, Kassas I, Hammoud MA, et al. Same day discharge following non-elective PCI for non-ST elevation acute coronary syndromes. Am Heart J. 2022;246:125-135. doi: 10.1016/j.ahj.2021.12.015.34998967
  66. 66. Clerico A, Zaninotto M, Aimo A, et al. Use of high-sensitivity cardiac troponins in the emergency department for the early rule-in and rule-out of acute myocardial infarction without persistent ST-segment elevation (NSTEMI) in Italy. Clin Chem Lab Med. 2021;60:169-182. doi: 10.1515/cclm-2021-1085.34927403
  67. 67. Sandeman D, Syed MBJ, Kimenai DM, et al. Implementation of an early rule-out pathway for myocardial infarction using a high-sensitivity cardiac troponin T assay. Open Heart. 2021;8:e001769. doi: 10.1136/openhrt-2021-001769.862741234824100
  68. 68. Tjora HL, Steiro OT, Langørgen J, et al. Diagnostic Performance of Novel Troponin Algorithms for the Rule-Out of Non-ST-Elevation Acute Coronary Syndrome. Clin Chem. 2022;68:291-302. doi: 10.1093/clinchem/hvab225.34897415
  69. 69. Chuang MA, Gnanamanickam ES, Karnon J, et al. Cost effectiveness of a 1-hour high-sensitivity troponin-T protocol: An analysis of the RAPID-TnT trial. Int J Cardiol Heart Vasc. 2021;38:100933. doi: 10.1016/j.ijcha.2021.100933.872842735024428
  70. 70. Suh EH, Tichter AM, Ranard LS, et al. Impact of a rapid high-sensitivity troponin pathway on patient flow in an urban emergency department. J Am Coll Emerg Physicians Open. 2022;3:e12739. doi: 10.1002/emp2.12739.907123735571147
  71. 71. Couch LS, Sinha A, Navin R, et al. Rapid risk stratification of acute coronary syndrome: adoption of an adapted European Society of Cardiology 0/1-hour troponin algorithm in a real-world setting. Eur Heart J Open. 2022;2:oeac048. doi: 10.1093/ehjopen/oeac048.940425436032815
  72. 72. Bozdereli Berikol G, Aydın H, Doğan H. Early discharging patients with chest pain using EDACS-ADP and COMPASS-MI risk predictors. Heart Vessels. 2022;37:1316-1325. doi: 10.1007/s00380-022-02036-9.885010235133498
  73. 73. Gohbara M, Iwahashi N, Okada K, et al. A Simple Risk Score to Differentiate Between Coronary Artery Obstruction and Coronary Artery Spasm of Patients With Acute Coronary Syndrome Without Persistent ST-Segment Elevation. Circ J. 2022;86:1509-1518. doi: 10.1253/circj.CJ-22-0096.35599005
  74. 74. Antwi-Amoabeng D, Roongsritong C, Taha M, et al. SVEAT score outperforms HEART score in patients admitted to a chest pain observation unit. World J Cardiol. 2022;14:454-461. doi: 10.4330/wjc.v14.i8.454.945325736160811
  75. 75. Dupuy AM, Pasquier G, Thiebaut L, Roubille F, Sebbane M, Cristol JP. Additive value of bioclinical risk scores to high sensitivity troponins-only strategy in acute coronary syndrome. Clin Chim Acta. 2021;523:273-284. doi: 10.1016/j.cca.2021.10.008.34648808
  76. 76. Matuskowitz AJ, Hall JP, Gregoski MJ, Saef SH. Clinician Perception of Risk As a Barrier to Implementation of a High-sensitivity Troponin Accelerated Diagnostic Protocol. Crit Pathw Cardiol. 2022;21:73-76. doi: 10.1097/HPC.0000000000000287.35604774
  77. 77. Koper LH, Frenk LDS, Meeder JG, et al. URGENT 1.5: diagnostic accuracy of the modified HEART score, with fingerstick point-of-care troponin testing, in ruling out acute coronary syndrome. Neth Heart J. 2022;30:360-369. doi: 10.1007/s12471-021-01646-8.927054634817832
  78. 78. Todd F, Duff J, Carlton E. Identifying low-risk chest pain in the emergency department without troponin testing: a validation study of the HE-MACS and HEAR risk scores. Emerg Med J. 2022;39:515-518. doi: 10.1136/emermed-2021-211669.34753776
  79. 79. Mark DG, Huang J, Ballard DW, et al. Graded Coronary Risk Stratification for Emergency Department Patients With Chest Pain: A Controlled Cohort Study. J Am Heart Assoc. 2021;10:e022539. doi: 10.1161/JAHA.121.022539.875192534743565
DOI: https://doi.org/10.2478/jce-2022-0012 | Journal eISSN: 2457-5518 | Journal ISSN: 2457-550X
Language: English
Page range: 43 - 53
Submitted on: Sep 20, 2022
Accepted on: Sep 27, 2022
Published on: Jan 27, 2023
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Theodora Benedek, Monica Marton-Popovici, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.