Have a personal or library account? Click to login
Site-specific Phenotype of Atherosclerotic Lesions According to Their Location Within the Coronary Tree – a CCTA-based Study of Vulnerable Plaques Cover

Site-specific Phenotype of Atherosclerotic Lesions According to Their Location Within the Coronary Tree – a CCTA-based Study of Vulnerable Plaques

Open Access
|Jul 2021

References

  1. 1. World Health Organization (WHO). Cardiovascular diseases (CVDs). Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  2. 2. Libby P, Buring JE, Badimon L et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5:56. doi: 10.1038/s41572-019-0106-z.10.1038/s41572-019-0106-z31420554
  3. 3. Shi X, Gao J, Lv Q, et al. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front Physiol. 2020;11:56. doi: 10.3389/fphys.2020.00056.10.3389/fphys.2020.00056701303932116766
  4. 4. Choi SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343. doi: 10.1007/s11886-010-0113-x.10.1007/s11886-010-0113-x20425160
  5. 5. Partida RA, Libby P, Crea F, Jang IK. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070-2076. doi: 10.1093/eurheartj/ehx786.10.1093/eurheartj/ehx786599121529329384
  6. 6. Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6:e005543. doi: 10.1161/JAHA.117.005543.10.1161/JAHA.117.005543552404428314799
  7. 7. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664-1672. doi: 10.1161/01.CIR.0000087480.94275.97.10.1161/01.CIR.0000087480.94275.9714530185
  8. 8. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–1866. doi: 10.1161/CIRCRESAHA.114.302721.10.1161/CIRCRESAHA.114.30272124902970
  9. 9. Hafiane A. Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis. 2019;6:26. doi: 10.3390/jcdd6030026.10.3390/jcdd6030026678760931357630
  10. 10. Costopoulos C, Brown AJ, Teng Z, Hoole SP, West NE, Samady H, Bennett MR. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. Int J Cardiovasc Imaging. 2016;32:189-200. doi: 10.1007/s10554-015-0701-3.10.1007/s10554-015-0701-326153522
  11. 11. Rathod KS, Hamshere SM, Jones DA, Mathur A. Intravascular Ultrasound Versus Optical Coherence Tomography for Coronary Artery Imaging - Apples and Oranges?. Interv Cardiol. 2015;10:8-15. doi: 10.15420/icr.2015.10.1.8.10.15420/icr.2015.10.1.8580846329588667
  12. 12. Knuuti J, Wijns W, Saraste A, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407-477. doi: 10.1093/eurheartj/ehz425.10.1093/eurheartj/ehz42531504439
  13. 13. Benedek T, Jako B, Benedek I. Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. Int Heart J. 2014;55:22-28. doi: 10.1536/ihj.13-213.10.1536/ihj.13-21324463925
  14. 14. Bittner DO, Mayrhofer T, Puchner SB, et al. Coronary Computed Tomography Angiography-Specific Definitions of High-Risk Plaque Features Improve Detection of Acute Coronary Syndrome. Circ Cardiovasc Imaging. 2018;11:e007657. doi: 10.1161/CIRCIMAGING.118.007657.10.1161/CIRCIMAGING.118.007657620522030354493
  15. 15. Murgia A, Balestrieri A, Crivelli P, et al. Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of coronary atherosclerosis. Cardiovasc Diagn Ther. 2020;10:2005-2017. doi: 10.21037/cdt-20-156.10.21037/cdt-20-156775876733381440
  16. 16. Liu W, Zhang Y, Yu CM, et al. Current understanding of coronary artery calcification. J Geriatr Cardiol. 2015;12:668-675. doi: 10.11909/j.issn.1671-5411.2015.06.012.
  17. 17. van Rosendael AR, Narula J, Lin FY, et al. Association of High-Density Calcified 1K Plaque With Risk of Acute Coronary Syndrome. JAMA Cardiol. 2020;5:282-290. doi: 10.1001/jamacardio.2019.5315.10.1001/jamacardio.2019.5315699094631968065
  18. 18. Shmilovich H, Cheng VY, Tamarappoo BK, et al. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis. 2011;219:588-595. doi: 10.1016/j.atherosclerosis.2011.07.128.10.1016/j.atherosclerosis.2011.07.128322684621862017
  19. 19. Brutkiewicz A, Kruk M, Demkow M, et al. The natural history of napkin-ring sign by coronary computed tomography angiography. Postepy Kardiol Interwencyjnej. 2019;15:314-320. doi: 10.5114/aic.2019.87886.10.5114/aic.2019.87886677719231592255
  20. 20. Opincariu D, Benedek T, Chițu M, Raț N, Benedek I. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging. 2020;36:2403-2427. doi: 10.1007/s10554-020-01926-1.10.1007/s10554-020-01926-132617720
  21. 21. Katranas SA, Kelekis AL, Antoniadis AP, Ziakas AG, Giannoglou GD. Differences in Stress Forces and Geometry between Left and Right Coronary Artery: A Pathophysiological Aspect of Atherosclerosis Heterogeneity. Hellenic J Cardiol. 2015;56:217-223.
  22. 22. Giannoglou GD, Antoniadis AP, Chatzizisis YS, Louridas GE. Difference in the topography of atherosclerosis in the left versus right coronary artery in patients referred for coronary angiography. BMC Cardiovasc Disord. 2010;10:26. doi: 10.1186/1471-2261-10-26.10.1186/1471-2261-10-26289777120534166
  23. 23. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 1990;66:1045-1066. doi: 10.1161/01.res.66.4.1045.10.1161/01.RES.66.4.1045
  24. 24. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035-2042. doi: 10.1001/jama.282.21.2035.10.1001/jama.282.21.203510591386
  25. 25. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705-2710. doi: 10.1161/01.cir.103.22.2705.10.1161/01.CIR.103.22.2705
  26. 26. Gebhard C, Fuchs TA, Stehli J, et al. Coronary dominance and prognosis in patients undergoing coronary computed tomographic angiography: results from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) registry. Eur Heart J Cardiovasc Imaging. 2015;16:853-862. doi: 10.1093/ehjci/jeu314.10.1093/ehjci/jeu314450579125744341
  27. 27. Veltman CE, de Graaf FR, Schuijf JD, et al. Prognostic value of coronary vessel dominance in relation to significant coronary artery disease determined with non-invasive computed tomography coronary angiography. Eur Heart J. 2012;33:1367-1377. doi: 10.1093/eurheartj/ehs034.10.1093/eurheartj/ehs03422390913
  28. 28. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705-2710. doi: 10.1161/01.cir.103.22.2705.10.1161/01.CIR.103.22.2705
  29. 29. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57. doi: 10.1016/j.jacc.2009.02.068.10.1016/j.jacc.2009.02.06819555840
  30. 30. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2016;17:120-129. doi: 10.1093/ehjci/jev325.10.1093/ehjci/jev325488289626690951
  31. 31. Elsman P, van ‘t Hof AW, Hoorntje JC, et al. Effect of coronary occlusion site on angiographic and clinical outcome in acute myocardial infarction patients treated with early coronary intervention. Am J Cardiol. 2006;97:1137-1141. doi: 10.1016/j. amjcard.2005.11.027.
  32. 32. Tang B, Yang H. Post percutaneous coronary interventional outcomes on proximal vs non-proximal lesions of the left and right coronary arteries: A systematic review and meta-analysis. Medicine (Baltimore). 2019;98:e16905. doi: 10.1097/MD.0000000000016905.10.1097/MD.0000000000016905683142931415437
  33. 33. Goldberg A, Southern DA, Galbraith PD, Traboulsi M, Knudtson ML, Ghali WA; Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) Investigators. Coronary dominance and prognosis of patients with acute coronary syndrome. Am Heart J. 2007;154:1116-1122. doi: 10.1016/j.ahj.2007.07.041.10.1016/j.ahj.2007.07.04118035084
  34. 34. Parikh NI, Honeycutt EF, Roe MT, et al. Left and codominant coronary artery circulations are associated with higher inhospital mortality among patients undergoing percutaneous coronary intervention for acute coronary syndromes: report From the National Cardiovascular Database Cath Percutaneous Coronary Intervention (CathPCI) Registry. Circ Cardiovasc Qual Outcomes. 2012;5:775-782. doi: 10.1161/CIRCOUTCOMES.111.964593.10.1161/CIRCOUTCOMES.111.96459323110791
DOI: https://doi.org/10.2478/jce-2021-0010 | Journal eISSN: 2457-5518 | Journal ISSN: 2457-550X
Language: English
Page range: 39 - 46
Submitted on: Apr 30, 2021
Accepted on: May 15, 2021
Published on: Jul 17, 2021
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Diana Opincariu, Nora Rat, Andras Mester, Roxana Hodas, Daniel Cernica, Dan Pasaroiu, Mihaela Ratiu, Monica Chitu, Istvan Kovacs, Imre Benedek, Theodora Benedek, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.