References
- 1. Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123-1133. doi: 10.1016/j.jacc.2013.11.053.10.1016/j.jacc.2013.11.05324491689
- 2. Lahoz R, Fagan A, McSharry M, Proudfoot C, Corda S, Studer R. Recurrent heart failure hospitalizations are associated with increased cardiovascular mortality in patients with heart failure in Clinical Practice Research Datalink. ESC Heart Fail. 2020;10.1002/ehf2.12727. doi: 10.1002/ehf2.12727.10.1002/ehf2.12727737393632383551
- 3. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-239. doi: 10.1161/CIR.0b013e31829e8807.10.1161/CIR.0b013e31829e880723741057
- 4. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121:e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667.10.1161/CIRCULATIONAHA.109.19266720019324
- 5. Guglin M, Zucker MJ, Borlaug BA, et al. Evaluation for heart transplantation and LVAD Implantation: JACC council perspectives. J Am Coll Cardiol. 2020;75:1471-1487. doi: 10.1016/j.jacc.2020.01.034.10.1016/j.jacc.2020.01.03432216916
- 6. Goldstein DJ, Naka Y, Horstmanshof D, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol. 2020;5:411-419. doi: 10.1001/jamacardio.2019.5323.10.1001/jamacardio.2019.5323699074631939996
- 7. Lui C, Suarez-Pierre A, Zhou X, et al. Effects of systemic and device-related complications in patients bridged to transplantation with left ventricular assist devices. J Surg Res. 2020;246:207-212. doi: 10.1016/j.jss.2019.08.016.10.1016/j.jss.2019.08.01631605947
- 8. Williams ML, Trivedi JR, McCants KC, et al. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann Thorac Surg. 2011;91:1330-1333. doi: 10.1016/j. athoracsur.2011.01.062.10.1016/j.athoracsur.2011.01.062
- 9. Karason K, Lund LH, Dalen M, et al. Randomized trial of a left ventricular assist device as destination therapy versus guideline-directed medical therapy in patients with advanced heart failure. Rationale and design of the SWEdish evaluation of left Ventricular Assist Device (SweVAD) trial. Eur J Heart Fail. 2020;22:739-750. doi: 10.1002/ejhf.1773.10.1002/ejhf.177332100946
- 10. Brandt EJ, Ross JS, Grady JN, et al. Impact of left ventricular assist devices and heart transplants on acute myocardial infarction and heart failure mortality and readmission measures. PloS one. 2020;15:e0230734. doi: 10.1371/journal. pone.0230734.10.1371/journal.pone.0230734
- 11. Schramm R, Morshuis M, Schoenbrodt M, et al. Current perspectives on mechanical circulatory support. Eur J Cardiothorac Surg. 2019;55(Suppl 1):i31-i37. doi: 10.1093/ejcts/ezy444.10.1093/ejcts/ezy444652609830608535
- 12. Mariani S, Chatterjee A, Hanke JS, et al. Is this the right MOMENTUM? – evidence from a HeartMate 3 randomized trial. J Thorac Dis. 2019;11:5626-5630. doi: 10.21037/jtd.2019.11.60.10.21037/jtd.2019.11.60698804132030285
- 13. Schmitto JD, Pya Y, Zimpfer D, et al. Long-term evaluation of a fully magnetically levitated circulatory support device for advanced heart failure-two-year results from the HeartMate 3 CE Mark Study. Eur J Heart Fail. 2019;21:90-97. doi: 10.1002/ejhf.1284.10.1002/ejhf.128430052304
- 14. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device – final report. N Engl J Med. 2019;380:1618-1627. doi: 10.1056/NEJMoa1900486.10.1056/NEJMoa190048630883052
- 15. Boruah P, Saqib N, Barooah J, Baruah D, Sharma P. Left Ventricular Assist Device: what the internist needs to know. A review of the literature. Cureus. 2019;11:e4399. doi: 10.7759/cureus.4399.10.7759/cureus.4399655967631245189
- 16. Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080-1086. doi: 10.1016/j.healun.2017.07.005.10.1016/j.healun.2017.07.00528942782
- 17. Kilic A, Acker MA, Atluri P. Dealing with surgical left ventricular assist device complications. J Thorac Dis. 2015;7:2158-2164. doi: 10.3978/j.issn.2072-1439.2015.10.64.
- 18. Olmsted RZ, Critsinelis A, Kurihara C, et al. Severe LVAD-related infections requiring surgical treatment: Incidence, predictors, effect on survival, and impact of device selection. J Card Surg. 2019;34:82-91. doi: 10.1111/jocs.13987.10.1111/jocs.1398730710496
- 19. O'Horo JC, Abu Saleh OM, Stulak JM, Wilhelm MP, Baddour LM, Rizwan Sohail M. Left Ventricular Assist Device infections: a systematic review. ASAIO J. 2018;64:287-294. doi: 10.1097/MAT.0000000000000684.10.1097/MAT.0000000000000684592073729095732
- 20. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451-460. doi: 10.1056/NEJMoa1602954.10.1056/NEJMoa160295428146651
- 21. Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378:1386-1395. doi: 10.1056/NEJMoa1800866.10.1056/NEJMoa180086629526139
- 22. Han JJ, Acker MA, Atluri P. Left ventricular assist devices. Circulation. 2018;138:2841-2851. doi: 10.1161/CIRCULATIONAHA.118.035566.10.1161/CIRCULATIONAHA.118.03556630565993
- 23. Patel CB, Blue L, Cagliostro B, et al. Left ventricular assist systems and infection-related outcomes: A comprehensive analysis of the MOMENTUM 3 trial. J Heart Lung Transplant. 2020;S1053-2498. doi: 10.1016/j.healun.2020.03.002.10.1016/j.healun.2020.03.00232276809
- 24. Tam MC, Patel VN, Weinberg RL, et al. Diagnostic Accuracy of FDG PET/CT in Suspected LVAD Infections: A Case Series, Systematic Review, and Meta-Analysis. JACC Cardiovasc imaging. 2020;13:1191-1202. doi: 10.1016/j.jcmg.2019.04.024.10.1016/j.jcmg.2019.04.024698025731326483
- 25. Leebeek FWG, Muslem R. Bleeding in critical care associated with left ventricular assist devices: pathophysiology, symptoms, and management. Hematology Am Soc Hematol Educ Program. 2019;2019:88-96. doi: 10.1182/hematology.2019000067.10.1182/hematology.2019000067691350231808855
- 26. Molina TL, Krisl JC, Donahue KR, Varnado S. Gastrointestinal bleeding in left ventricular assist device: octreotide and other treatment modalities. ASAIO J. 2018;64:433-439. doi: 10.1097/MAT.0000000000000758.10.1097/MAT.000000000000075829406356
- 27. Shah P, Tantry US, Bliden KP, Gurbel PA. Bleeding and thrombosis associated with ventricular assist device therapy. J Heart Lung Transplant. 2017;36:1164-1173. doi: 10.1016/j. healun.2017.05.008.10.1016/j.healun.2017.05.008
- 28. Imamura T, Kinugawa K, Uriel N. Therapeutic strategy for gastrointestinal bleeding in patients with left ventricular assist device. Circulation. 2018;82:2931-2938. doi: 10.1253/circj.CJ-18-0883.10.1253/circj.CJ-18-088330369592
- 29. Juricek C, Imamura T, Nguyen A, et al. Long-acting octreotide reduces the recurrence of gastrointestinal bleeding in patients with a continuous-flow Left Ventricular Assist Device. J Card Fail. 2018;24:249-254. doi: 10.1016/j.cardfail.2018.01.011.10.1016/j.cardfail.2018.01.011589711629427603
- 30. Namdaran P, Zikos TA, Pan JY, Banerjee D. Thalidomide use reduces risk of refractory gastrointestinal bleeding in patients with continuous flow left ventricular assist devices. ASAIO J. 2020;66:645-651. doi: 10.1097/MAT.0000000000001054.10.1097/MAT.000000000000105431425265
- 31. Elder T, Raghavan A, Smith A, et al. Outcomes after intracranial hemorrhage in patients with left ventricular assist devices: a systematic review of literature. World Neurosurgery. 2019;132:265-272. doi: 10.1016/j.wneu.2019.08.211.10.1016/j.wneu.2019.08.21131493616
- 32. Veasey TM, Floroff CK, Strout SE, et al. Evaluation of anticoagulation and nonsurgical major bleeding in recipients of continuous-flow left ventricular assist devices. Artif Organs. 2019;43:736-744. doi: 10.1111/aor.13456.10.1111/aor.1345630868618
- 33. Scandroglio AM, Kaufmann F, Pieri M, et al. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol. 2016;67:2758-2768. doi: 10.1016/j.jacc.2016.03.573.10.1016/j.jacc.2016.03.57327282897
- 34. Alnabelsi T, Shafii AE, Gurley JC, Dulnuan K, Harris DD, 2nd, Guglin M. Left Ventricular Assist Device Outflow Graft Obstruction: A Complication Specific to Polytetrafluoroethylene Covering. A Word of Caution! ASAIO J. 2019;65:e58-e62. doi: 10.1097/MAT.0000000000000929.10.1097/MAT.000000000000092930575627
- 35. Maltais S, Kilic A, Nathan S, et al. PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management: The PREVENT multi-center study. J Heart Lung Transplant. 2017;36:1-12. doi: 10.1016/j.healun.2016.10.001.10.1016/j.healun.2016.10.00127865732
- 36. Sato T, Fujino T, Higo T, et al. Flow pattern of outflow graft is useful for detecting pump thrombosis in a patient with left ventricular assist device. Int Heart J. 2019;60:994-997. doi: 10.1536/ihj.18-600.10.1536/ihj.18-60031257336
- 37. Hurst TE, Xanthopoulos A, Ehrlinger J, et al. Dynamic prediction of left ventricular assist device pump thrombosis based on lactate dehydrogenase trends. ESC Heart Fail. 2019;6:1005-1014. doi: 10.1002/ehf2.12473.10.1002/ehf2.12473681606331318170
- 38. Ferrera C, Gonzalez Fernandez O, Bouzas N, et al. Neutrophil to lymphocyte ratio is related to thrombotic complications and survival in continuous flow left ventricular assist devices. ASAIO J. 2020;66:199-204. doi: 10.1097/MAT.0000000000000971.10.1097/MAT.000000000000097130913104
- 39. Usman MS, Ahmed S, Yamani N, et al. Meta-analysis of the effect of preoperative atrial fibrillation on outcomes after left ventricular assist device implantation. Am J Cardiol. 2019;124:158-162. doi: 10.1016/j.amjcard.2019.03.038.10.1016/j.amjcard.2019.03.03831047654
- 40. Imamura T, Kinugawa K, Ono M, et al. Implication of preoperative existence of atrial fibrillation on hemocompatibility-related adverse events during left ventricular assist device support. Circulation. 2019;83:1286-1292. doi: 10.1253/circj.CJ-18-1215.10.1253/circj.CJ-18-121531019163
- 41. Gordon JS, Maynes EJ, Choi JH, et al. Ventricular arrhythmias following continuous-flow left ventricular assist device implantation: A systematic review. Artif Organs. 2020;10.1111/aor.13665. doi: 10.1111/aor.13665.10.1111/aor.1366532043582
- 42. Grinstein J, Garan AR, Oesterle A, et al. Increased rate of pump thrombosis and cardioembolic events following ventricular tachycardia ablation in patients supported with left ventricular assist devices. ASAIO J. 2020;10.1097/MAT.0000000000001155. doi: 10.1097/MAT.0000000000001155.10.1097/MAT.000000000000115533136600
- 43. Saeed O, Colombo PC, Mehra MR, et al. Effect of aspirin dose on hemocompatibility-related outcomes with a magnetically levitated left ventricular assist device: An analysis from the MOMENTUM 3 study. J Heart Lung Transplant. 2020;39:518-525. doi: 10.1016/j.healun.2020.03.001.10.1016/j.healun.2020.03.001765030432340871
- 44. Imamura T, Narang N, Kim G, et al. Decoupling between diastolic pulmonary artery and pulmonary capillary wedge pressures is associated with right ventricular dysfunction and hemocompatibility-related adverse events in patients with left ventricular assist devices. J Am Heart Assoc. 2020;9:e014801. doi: 10.1161/JAHA.119.014801.10.1161/JAHA.119.014801742862432223394
- 45. Kirklin JK, Naftel DC, Myers SL, Pagani FD, Colombo PC. Quantifying the impact from stroke during support with continuous flow ventricular assist devices: An STS INTERMACS analysis. J Heart Lung Transplant. 2020; S1053-2498. doi: 10.1016/j.healun.2020.04.006.10.1016/j.healun.2020.04.00632376278
- 46. Lanfear AT, Hamandi M, Fan J, DiMaio JM, George TJ. Trends in HeartMate 3: What we know so far. J Card Surg. 2020;35:180-187. doi: 10.1111/jocs.14319.10.1111/jocs.1431931692113
- 47. Cho SM, Starling RC, Teuteberg J, et al. Understanding risk factors and predictors for stroke subtypes in the ENDURANCE trials. J Heart Lung Transplant. 2020;S1053-2498. doi: 10.1016/j.healun.2020.01.1330.10.1016/j.healun.2020.01.133032044205
- 48. Cho SM, Moazami N, Katz S, Bhimraj A, Shrestha NK, Frontera JA. Stroke risk following infection in patients with continuous-flow left ventricular assist device. Neurocrit Care. 2019;31:72-80. doi: 10.1007/s12028-018-0662-1.10.1007/s12028-018-0662-130644037
- 49. Hassett CE, Cho SM, Rice CJ, et al. Cerebral microembolization in left ventricular assist device associated ischemic events. J Stroke Cerebrovasc Dis. 2020;29:104660. doi: 10.1016/j. jstrokecerebrovasdis.2020.104660.10.1016/j.jstrokecerebrovasdis.2020.104660
- 50. Vieira JL, Pfeffer M, Claggett BL, et al. The impact of statin therapy on neurological events following left ventricular assist system implantation in advanced heart failure. J Heart Lung Transplant. 2020;39:582-592. doi: 10.1016/j. healun.2020.02.017.10.1016/j.healun.2020.02.017
- 51. Imamura T, Narang N, Kim G, et al. Aortic Insufficiency during HeartMate 3 Left Ventricular Assist Device Support: AI in HeartMate 3. J Card Fail. 2020;S1071-9164. doi: 10.1016/j. cardfail.2020.05.013.
- 52. Kagawa H, Aranda-Michel E, Kormos RL, et al. Aortic insufficiency after left ventricular assist device implantation: predictors and outcomes. Ann Thorac Surg. 2020; S0003-4975. doi: 10.1016/j.athoracsur.2019.12.030.10.1016/j.athoracsur.2019.12.03031991135
- 53. Imamura T, Kim G, Nitta D, et al. Aortic insufficiency and hemocompatibility-related adverse events in patients with left ventricular assist devices. J Card Fail. 2019;25:787-794. doi: 10.1016/j.cardfail.2019.08.003.10.1016/j.cardfail.2019.08.003682312431419485
- 54. Goodwin ML, Bobba CM, Mokadam NA, et al. Continuous-flow left ventricular assist devices and the aortic valve: interactions, issues, and surgical therapy. Curr Heart Fail Rep. 2020;10.1007/s11897-020-00464-0. doi: 10.1007/s11897-020-00464-0.10.1007/s11897-020-00464-032488504
- 55. Kar B, Prathipati P, Jumean M, Nathan SS, Gregoric ID. Management of aortic insufficiency using transcatheter aortic valve replacement in patients with left ventricular assist device support. ASAIO J. 2020;66:e82-e6. doi: 10.1097/MAT.0000000000001053.10.1097/MAT.000000000000105331425270
- 56. Yehya A, Rajagopal V, Meduri C, et al. Short-term results with transcatheter aortic valve replacement for treatment of left ventricular assist device patients with symptomatic aortic insufficiency. J Heart Lung Transplant. 2019;38:920-926. doi: 10.1016/j.healun.2019.03.001.10.1016/j.healun.2019.03.00130898555
- 57. Kirklin JK, Naftel DC, Kormos RL, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141-156. doi: 10.1016/j.healun.2012.12.004.10.1016/j.healun.2012.12.00423352390
- 58. Movahedi F, Kormos RL, Lohmueller L, et al. Sequential pattern mining of longitudinal adverse events after Left Ventricular Assist Device implant. IEEE J Biomed Health Inform. 2019;24:2347-2358. doi: 10.1109/JBHI.2019.2958714.10.1109/JBHI.2019.2958714846252531831453
- 59. Kilic A, Seese L, Pagani F, Kormos R. Identifying temporal relationships between in-hospital adverse events after implantation of durable left ventricular assist devices. J Am Heart Assoc. 2020;9:e015449. doi: 10.1161/JAHA.119.015449.10.1161/JAHA.119.015449742853432285751
- 60. Jiritano F, Coco VL, Matteucci M, Fina D, Willers A, Lorusso R. Temporary mechanical circulatory support in acute heart failure. Card Fail Rev. 2020;6:1-7. doi: 10.15420/cfr.2019.02.10.15420/cfr.2019.02711130332257388
- 61. Crowley J, Cronin B, Essandoh M, D'Alessandro D, Shelton K, Dalia AA. Transesophageal echocardiography for Impella placement and management. J Cardiothorac Vasc Anesth. 2019;33:2663-2668. doi: 10.1053/j.jvca.2019.01.048.10.1053/j.jvca.2019.01.04830770179
- 62. Monteagudo-Vela M, Simon A, Riesgo Gil F, et al. Clinical indications of IMPELLA short-term mechanical circulatory support in a tertiary Centre. Cardiovasc Revascularization Med. 2020;21:629-637. doi: 10.1016/j.carrev.2019.12.010.10.1016/j.carrev.2019.12.01031859100
- 63. Maniuc O, Salinger T, Anders F, et al. Impella CP use in patients with non-ischaemic cardiogenic shock. ESC Heart Fail. 2019;6:863-866. doi: 10.1002/ehf2.12446.10.1002/ehf2.12446667628031095902
- 64. Johannsen L, Mahabadi AA, Totzeck M, et al. Access site complications following Impella-supported high-risk percutaneous coronary interventions. Sci Rep. 2019;9:17844. doi: 10.1038/s41598-019-54277-w.10.1038/s41598-019-54277-w688283431780769
- 65. Elkayam U, Schäfer A, Chieffo A, et al. Use of Impella heart pump for management of women with peripartum cardiogenic shock. Clin Cardiol. 2019;42:974-981. doi: 10.1002/clc.23249.10.1002/clc.23249678847331436333
- 66. Wernly B, Seelmaier C, Leistner D, et al. Mechanical circulatory support with Impella versus intra-aortic balloon pump or medical treatment in cardiogenic shock – a critical appraisal of current data. Clin Res Cardiol. 2019;108:1249-1257. doi: 10.1007/s00392-019-01458-2.10.1007/s00392-019-01458-230900010
- 67. Rohm CL, Gadidov B, Leitson M, Ray HE, Prasad R. Predictors of mortality and outcomes of acute severe cardiogenic shock treated with the Impella device. Am J Cardiol. 2019;124:499-504. doi: 10.1016/j.amjcard.2019.05.039.10.1016/j.amjcard.2019.05.03931262498