Have a personal or library account? Click to login
Left Ventricular Assist Device-Related Complications Cover

Left Ventricular Assist Device-Related Complications

Open Access
|Oct 2020

References

  1. 1. Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123-1133. doi: 10.1016/j.jacc.2013.11.053.10.1016/j.jacc.2013.11.05324491689
  2. 2. Lahoz R, Fagan A, McSharry M, Proudfoot C, Corda S, Studer R. Recurrent heart failure hospitalizations are associated with increased cardiovascular mortality in patients with heart failure in Clinical Practice Research Datalink. ESC Heart Fail. 2020;10.1002/ehf2.12727. doi: 10.1002/ehf2.12727.10.1002/ehf2.12727737393632383551
  3. 3. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-239. doi: 10.1161/CIR.0b013e31829e8807.10.1161/CIR.0b013e31829e880723741057
  4. 4. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121:e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667.10.1161/CIRCULATIONAHA.109.19266720019324
  5. 5. Guglin M, Zucker MJ, Borlaug BA, et al. Evaluation for heart transplantation and LVAD Implantation: JACC council perspectives. J Am Coll Cardiol. 2020;75:1471-1487. doi: 10.1016/j.jacc.2020.01.034.10.1016/j.jacc.2020.01.03432216916
  6. 6. Goldstein DJ, Naka Y, Horstmanshof D, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol. 2020;5:411-419. doi: 10.1001/jamacardio.2019.5323.10.1001/jamacardio.2019.5323699074631939996
  7. 7. Lui C, Suarez-Pierre A, Zhou X, et al. Effects of systemic and device-related complications in patients bridged to transplantation with left ventricular assist devices. J Surg Res. 2020;246:207-212. doi: 10.1016/j.jss.2019.08.016.10.1016/j.jss.2019.08.01631605947
  8. 8. Williams ML, Trivedi JR, McCants KC, et al. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann Thorac Surg. 2011;91:1330-1333. doi: 10.1016/j. athoracsur.2011.01.062.10.1016/j.athoracsur.2011.01.062
  9. 9. Karason K, Lund LH, Dalen M, et al. Randomized trial of a left ventricular assist device as destination therapy versus guideline-directed medical therapy in patients with advanced heart failure. Rationale and design of the SWEdish evaluation of left Ventricular Assist Device (SweVAD) trial. Eur J Heart Fail. 2020;22:739-750. doi: 10.1002/ejhf.1773.10.1002/ejhf.177332100946
  10. 10. Brandt EJ, Ross JS, Grady JN, et al. Impact of left ventricular assist devices and heart transplants on acute myocardial infarction and heart failure mortality and readmission measures. PloS one. 2020;15:e0230734. doi: 10.1371/journal. pone.0230734.10.1371/journal.pone.0230734
  11. 11. Schramm R, Morshuis M, Schoenbrodt M, et al. Current perspectives on mechanical circulatory support. Eur J Cardiothorac Surg. 2019;55(Suppl 1):i31-i37. doi: 10.1093/ejcts/ezy444.10.1093/ejcts/ezy444652609830608535
  12. 12. Mariani S, Chatterjee A, Hanke JS, et al. Is this the right MOMENTUM? – evidence from a HeartMate 3 randomized trial. J Thorac Dis. 2019;11:5626-5630. doi: 10.21037/jtd.2019.11.60.10.21037/jtd.2019.11.60698804132030285
  13. 13. Schmitto JD, Pya Y, Zimpfer D, et al. Long-term evaluation of a fully magnetically levitated circulatory support device for advanced heart failure-two-year results from the HeartMate 3 CE Mark Study. Eur J Heart Fail. 2019;21:90-97. doi: 10.1002/ejhf.1284.10.1002/ejhf.128430052304
  14. 14. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device – final report. N Engl J Med. 2019;380:1618-1627. doi: 10.1056/NEJMoa1900486.10.1056/NEJMoa190048630883052
  15. 15. Boruah P, Saqib N, Barooah J, Baruah D, Sharma P. Left Ventricular Assist Device: what the internist needs to know. A review of the literature. Cureus. 2019;11:e4399. doi: 10.7759/cureus.4399.10.7759/cureus.4399655967631245189
  16. 16. Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080-1086. doi: 10.1016/j.healun.2017.07.005.10.1016/j.healun.2017.07.00528942782
  17. 17. Kilic A, Acker MA, Atluri P. Dealing with surgical left ventricular assist device complications. J Thorac Dis. 2015;7:2158-2164. doi: 10.3978/j.issn.2072-1439.2015.10.64.
  18. 18. Olmsted RZ, Critsinelis A, Kurihara C, et al. Severe LVAD-related infections requiring surgical treatment: Incidence, predictors, effect on survival, and impact of device selection. J Card Surg. 2019;34:82-91. doi: 10.1111/jocs.13987.10.1111/jocs.1398730710496
  19. 19. O'Horo JC, Abu Saleh OM, Stulak JM, Wilhelm MP, Baddour LM, Rizwan Sohail M. Left Ventricular Assist Device infections: a systematic review. ASAIO J. 2018;64:287-294. doi: 10.1097/MAT.0000000000000684.10.1097/MAT.0000000000000684592073729095732
  20. 20. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451-460. doi: 10.1056/NEJMoa1602954.10.1056/NEJMoa160295428146651
  21. 21. Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378:1386-1395. doi: 10.1056/NEJMoa1800866.10.1056/NEJMoa180086629526139
  22. 22. Han JJ, Acker MA, Atluri P. Left ventricular assist devices. Circulation. 2018;138:2841-2851. doi: 10.1161/CIRCULATIONAHA.118.035566.10.1161/CIRCULATIONAHA.118.03556630565993
  23. 23. Patel CB, Blue L, Cagliostro B, et al. Left ventricular assist systems and infection-related outcomes: A comprehensive analysis of the MOMENTUM 3 trial. J Heart Lung Transplant. 2020;S1053-2498. doi: 10.1016/j.healun.2020.03.002.10.1016/j.healun.2020.03.00232276809
  24. 24. Tam MC, Patel VN, Weinberg RL, et al. Diagnostic Accuracy of FDG PET/CT in Suspected LVAD Infections: A Case Series, Systematic Review, and Meta-Analysis. JACC Cardiovasc imaging. 2020;13:1191-1202. doi: 10.1016/j.jcmg.2019.04.024.10.1016/j.jcmg.2019.04.024698025731326483
  25. 25. Leebeek FWG, Muslem R. Bleeding in critical care associated with left ventricular assist devices: pathophysiology, symptoms, and management. Hematology Am Soc Hematol Educ Program. 2019;2019:88-96. doi: 10.1182/hematology.2019000067.10.1182/hematology.2019000067691350231808855
  26. 26. Molina TL, Krisl JC, Donahue KR, Varnado S. Gastrointestinal bleeding in left ventricular assist device: octreotide and other treatment modalities. ASAIO J. 2018;64:433-439. doi: 10.1097/MAT.0000000000000758.10.1097/MAT.000000000000075829406356
  27. 27. Shah P, Tantry US, Bliden KP, Gurbel PA. Bleeding and thrombosis associated with ventricular assist device therapy. J Heart Lung Transplant. 2017;36:1164-1173. doi: 10.1016/j. healun.2017.05.008.10.1016/j.healun.2017.05.008
  28. 28. Imamura T, Kinugawa K, Uriel N. Therapeutic strategy for gastrointestinal bleeding in patients with left ventricular assist device. Circulation. 2018;82:2931-2938. doi: 10.1253/circj.CJ-18-0883.10.1253/circj.CJ-18-088330369592
  29. 29. Juricek C, Imamura T, Nguyen A, et al. Long-acting octreotide reduces the recurrence of gastrointestinal bleeding in patients with a continuous-flow Left Ventricular Assist Device. J Card Fail. 2018;24:249-254. doi: 10.1016/j.cardfail.2018.01.011.10.1016/j.cardfail.2018.01.011589711629427603
  30. 30. Namdaran P, Zikos TA, Pan JY, Banerjee D. Thalidomide use reduces risk of refractory gastrointestinal bleeding in patients with continuous flow left ventricular assist devices. ASAIO J. 2020;66:645-651. doi: 10.1097/MAT.0000000000001054.10.1097/MAT.000000000000105431425265
  31. 31. Elder T, Raghavan A, Smith A, et al. Outcomes after intracranial hemorrhage in patients with left ventricular assist devices: a systematic review of literature. World Neurosurgery. 2019;132:265-272. doi: 10.1016/j.wneu.2019.08.211.10.1016/j.wneu.2019.08.21131493616
  32. 32. Veasey TM, Floroff CK, Strout SE, et al. Evaluation of anticoagulation and nonsurgical major bleeding in recipients of continuous-flow left ventricular assist devices. Artif Organs. 2019;43:736-744. doi: 10.1111/aor.13456.10.1111/aor.1345630868618
  33. 33. Scandroglio AM, Kaufmann F, Pieri M, et al. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol. 2016;67:2758-2768. doi: 10.1016/j.jacc.2016.03.573.10.1016/j.jacc.2016.03.57327282897
  34. 34. Alnabelsi T, Shafii AE, Gurley JC, Dulnuan K, Harris DD, 2nd, Guglin M. Left Ventricular Assist Device Outflow Graft Obstruction: A Complication Specific to Polytetrafluoroethylene Covering. A Word of Caution! ASAIO J. 2019;65:e58-e62. doi: 10.1097/MAT.0000000000000929.10.1097/MAT.000000000000092930575627
  35. 35. Maltais S, Kilic A, Nathan S, et al. PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management: The PREVENT multi-center study. J Heart Lung Transplant. 2017;36:1-12. doi: 10.1016/j.healun.2016.10.001.10.1016/j.healun.2016.10.00127865732
  36. 36. Sato T, Fujino T, Higo T, et al. Flow pattern of outflow graft is useful for detecting pump thrombosis in a patient with left ventricular assist device. Int Heart J. 2019;60:994-997. doi: 10.1536/ihj.18-600.10.1536/ihj.18-60031257336
  37. 37. Hurst TE, Xanthopoulos A, Ehrlinger J, et al. Dynamic prediction of left ventricular assist device pump thrombosis based on lactate dehydrogenase trends. ESC Heart Fail. 2019;6:1005-1014. doi: 10.1002/ehf2.12473.10.1002/ehf2.12473681606331318170
  38. 38. Ferrera C, Gonzalez Fernandez O, Bouzas N, et al. Neutrophil to lymphocyte ratio is related to thrombotic complications and survival in continuous flow left ventricular assist devices. ASAIO J. 2020;66:199-204. doi: 10.1097/MAT.0000000000000971.10.1097/MAT.000000000000097130913104
  39. 39. Usman MS, Ahmed S, Yamani N, et al. Meta-analysis of the effect of preoperative atrial fibrillation on outcomes after left ventricular assist device implantation. Am J Cardiol. 2019;124:158-162. doi: 10.1016/j.amjcard.2019.03.038.10.1016/j.amjcard.2019.03.03831047654
  40. 40. Imamura T, Kinugawa K, Ono M, et al. Implication of preoperative existence of atrial fibrillation on hemocompatibility-related adverse events during left ventricular assist device support. Circulation. 2019;83:1286-1292. doi: 10.1253/circj.CJ-18-1215.10.1253/circj.CJ-18-121531019163
  41. 41. Gordon JS, Maynes EJ, Choi JH, et al. Ventricular arrhythmias following continuous-flow left ventricular assist device implantation: A systematic review. Artif Organs. 2020;10.1111/aor.13665. doi: 10.1111/aor.13665.10.1111/aor.1366532043582
  42. 42. Grinstein J, Garan AR, Oesterle A, et al. Increased rate of pump thrombosis and cardioembolic events following ventricular tachycardia ablation in patients supported with left ventricular assist devices. ASAIO J. 2020;10.1097/MAT.0000000000001155. doi: 10.1097/MAT.0000000000001155.10.1097/MAT.000000000000115533136600
  43. 43. Saeed O, Colombo PC, Mehra MR, et al. Effect of aspirin dose on hemocompatibility-related outcomes with a magnetically levitated left ventricular assist device: An analysis from the MOMENTUM 3 study. J Heart Lung Transplant. 2020;39:518-525. doi: 10.1016/j.healun.2020.03.001.10.1016/j.healun.2020.03.001765030432340871
  44. 44. Imamura T, Narang N, Kim G, et al. Decoupling between diastolic pulmonary artery and pulmonary capillary wedge pressures is associated with right ventricular dysfunction and hemocompatibility-related adverse events in patients with left ventricular assist devices. J Am Heart Assoc. 2020;9:e014801. doi: 10.1161/JAHA.119.014801.10.1161/JAHA.119.014801742862432223394
  45. 45. Kirklin JK, Naftel DC, Myers SL, Pagani FD, Colombo PC. Quantifying the impact from stroke during support with continuous flow ventricular assist devices: An STS INTERMACS analysis. J Heart Lung Transplant. 2020; S1053-2498. doi: 10.1016/j.healun.2020.04.006.10.1016/j.healun.2020.04.00632376278
  46. 46. Lanfear AT, Hamandi M, Fan J, DiMaio JM, George TJ. Trends in HeartMate 3: What we know so far. J Card Surg. 2020;35:180-187. doi: 10.1111/jocs.14319.10.1111/jocs.1431931692113
  47. 47. Cho SM, Starling RC, Teuteberg J, et al. Understanding risk factors and predictors for stroke subtypes in the ENDURANCE trials. J Heart Lung Transplant. 2020;S1053-2498. doi: 10.1016/j.healun.2020.01.1330.10.1016/j.healun.2020.01.133032044205
  48. 48. Cho SM, Moazami N, Katz S, Bhimraj A, Shrestha NK, Frontera JA. Stroke risk following infection in patients with continuous-flow left ventricular assist device. Neurocrit Care. 2019;31:72-80. doi: 10.1007/s12028-018-0662-1.10.1007/s12028-018-0662-130644037
  49. 49. Hassett CE, Cho SM, Rice CJ, et al. Cerebral microembolization in left ventricular assist device associated ischemic events. J Stroke Cerebrovasc Dis. 2020;29:104660. doi: 10.1016/j. jstrokecerebrovasdis.2020.104660.10.1016/j.jstrokecerebrovasdis.2020.104660
  50. 50. Vieira JL, Pfeffer M, Claggett BL, et al. The impact of statin therapy on neurological events following left ventricular assist system implantation in advanced heart failure. J Heart Lung Transplant. 2020;39:582-592. doi: 10.1016/j. healun.2020.02.017.10.1016/j.healun.2020.02.017
  51. 51. Imamura T, Narang N, Kim G, et al. Aortic Insufficiency during HeartMate 3 Left Ventricular Assist Device Support: AI in HeartMate 3. J Card Fail. 2020;S1071-9164. doi: 10.1016/j. cardfail.2020.05.013.
  52. 52. Kagawa H, Aranda-Michel E, Kormos RL, et al. Aortic insufficiency after left ventricular assist device implantation: predictors and outcomes. Ann Thorac Surg. 2020; S0003-4975. doi: 10.1016/j.athoracsur.2019.12.030.10.1016/j.athoracsur.2019.12.03031991135
  53. 53. Imamura T, Kim G, Nitta D, et al. Aortic insufficiency and hemocompatibility-related adverse events in patients with left ventricular assist devices. J Card Fail. 2019;25:787-794. doi: 10.1016/j.cardfail.2019.08.003.10.1016/j.cardfail.2019.08.003682312431419485
  54. 54. Goodwin ML, Bobba CM, Mokadam NA, et al. Continuous-flow left ventricular assist devices and the aortic valve: interactions, issues, and surgical therapy. Curr Heart Fail Rep. 2020;10.1007/s11897-020-00464-0. doi: 10.1007/s11897-020-00464-0.10.1007/s11897-020-00464-032488504
  55. 55. Kar B, Prathipati P, Jumean M, Nathan SS, Gregoric ID. Management of aortic insufficiency using transcatheter aortic valve replacement in patients with left ventricular assist device support. ASAIO J. 2020;66:e82-e6. doi: 10.1097/MAT.0000000000001053.10.1097/MAT.000000000000105331425270
  56. 56. Yehya A, Rajagopal V, Meduri C, et al. Short-term results with transcatheter aortic valve replacement for treatment of left ventricular assist device patients with symptomatic aortic insufficiency. J Heart Lung Transplant. 2019;38:920-926. doi: 10.1016/j.healun.2019.03.001.10.1016/j.healun.2019.03.00130898555
  57. 57. Kirklin JK, Naftel DC, Kormos RL, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141-156. doi: 10.1016/j.healun.2012.12.004.10.1016/j.healun.2012.12.00423352390
  58. 58. Movahedi F, Kormos RL, Lohmueller L, et al. Sequential pattern mining of longitudinal adverse events after Left Ventricular Assist Device implant. IEEE J Biomed Health Inform. 2019;24:2347-2358. doi: 10.1109/JBHI.2019.2958714.10.1109/JBHI.2019.2958714846252531831453
  59. 59. Kilic A, Seese L, Pagani F, Kormos R. Identifying temporal relationships between in-hospital adverse events after implantation of durable left ventricular assist devices. J Am Heart Assoc. 2020;9:e015449. doi: 10.1161/JAHA.119.015449.10.1161/JAHA.119.015449742853432285751
  60. 60. Jiritano F, Coco VL, Matteucci M, Fina D, Willers A, Lorusso R. Temporary mechanical circulatory support in acute heart failure. Card Fail Rev. 2020;6:1-7. doi: 10.15420/cfr.2019.02.10.15420/cfr.2019.02711130332257388
  61. 61. Crowley J, Cronin B, Essandoh M, D'Alessandro D, Shelton K, Dalia AA. Transesophageal echocardiography for Impella placement and management. J Cardiothorac Vasc Anesth. 2019;33:2663-2668. doi: 10.1053/j.jvca.2019.01.048.10.1053/j.jvca.2019.01.04830770179
  62. 62. Monteagudo-Vela M, Simon A, Riesgo Gil F, et al. Clinical indications of IMPELLA short-term mechanical circulatory support in a tertiary Centre. Cardiovasc Revascularization Med. 2020;21:629-637. doi: 10.1016/j.carrev.2019.12.010.10.1016/j.carrev.2019.12.01031859100
  63. 63. Maniuc O, Salinger T, Anders F, et al. Impella CP use in patients with non-ischaemic cardiogenic shock. ESC Heart Fail. 2019;6:863-866. doi: 10.1002/ehf2.12446.10.1002/ehf2.12446667628031095902
  64. 64. Johannsen L, Mahabadi AA, Totzeck M, et al. Access site complications following Impella-supported high-risk percutaneous coronary interventions. Sci Rep. 2019;9:17844. doi: 10.1038/s41598-019-54277-w.10.1038/s41598-019-54277-w688283431780769
  65. 65. Elkayam U, Schäfer A, Chieffo A, et al. Use of Impella heart pump for management of women with peripartum cardiogenic shock. Clin Cardiol. 2019;42:974-981. doi: 10.1002/clc.23249.10.1002/clc.23249678847331436333
  66. 66. Wernly B, Seelmaier C, Leistner D, et al. Mechanical circulatory support with Impella versus intra-aortic balloon pump or medical treatment in cardiogenic shock – a critical appraisal of current data. Clin Res Cardiol. 2019;108:1249-1257. doi: 10.1007/s00392-019-01458-2.10.1007/s00392-019-01458-230900010
  67. 67. Rohm CL, Gadidov B, Leitson M, Ray HE, Prasad R. Predictors of mortality and outcomes of acute severe cardiogenic shock treated with the Impella device. Am J Cardiol. 2019;124:499-504. doi: 10.1016/j.amjcard.2019.05.039.10.1016/j.amjcard.2019.05.03931262498
DOI: https://doi.org/10.2478/jce-2020-0014 | Journal eISSN: 2457-5518 | Journal ISSN: 2457-550X
Language: English
Page range: 50 - 58
Submitted on: Jul 14, 2020
|
Accepted on: Sep 8, 2020
|
Published on: Oct 20, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Alexandra Clement, Larisa Anghel, Radu Sascău, Cristian Stătescu, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.