Have a personal or library account? Click to login
Artificial Intelligence: The Next Blockbuster Drug in Critical Care? Cover

Artificial Intelligence: The Next Blockbuster Drug in Critical Care?

Open Access
|May 2023

References

  1. 1. Lewis JF, Brackenbury A. Role of exogenous surfactant in acute lung injury. Crit Care Med. 2003;31(4 Suppl):S324–8. doi: 10.1097/01.CCM.0000057911.19145.9F.
  2. 2. Zarychanski R, Abou-Setta AM, Turgeon AF, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88. doi: 10.1001/jama.2013.430.
  3. 3. Savel RH, Munro CL. Evidence-based backlash: the tale of drotrecogin alfa. Am J Crit Care. 2012;21(2):81–3. doi: 10.4037/ajcc2012903.
  4. 4. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8. doi: 10.1056/NEJM200005043421801.
  5. 5. Feretzakis G, Karlis G, Loupelis E, et al. Using Machine Learning Techniques to Predict Hospital Admission at the Emergency Department. J Crit Care Med (Targu Mures). 2022;8(2):107–16. doi: 10.2478/jccm-2022-0003.
  6. 6. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–60. doi: 10.1038/s41551-018-0304-0.
  7. 7. Lyons PG, Hofford MR, Yu SC, et al. Factors Associated With Variability in the Performance of a Proprietary Sepsis Prediction Model Across 9 Networked Hospitals in the US. JAMA Intern Med. 2023. doi: 10.1001/jamainternmed.2022.7182.
  8. 8. Vela D, Sharp A, Zhang R, et al. Temporal quality degradation in AI models. Sci Rep. 2022;12(1):11654. doi: 10.1038/s41598-022-15245-z.
  9. 9. Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med. 2022;5(1):48. doi: 10.1038/s41746-022-00592-y.
  10. 10. Mazurowski MA. Artificial Intelligence May Cause a Significant Disruption to the Radiology Workforce. J Am Coll Radiol. 2019;16(8):1077–82. doi: 10.1016/j.jacr.2019.01.026.
  11. 11. Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med. 2018;48:e13–e4. doi: 10.1016/j.ejim.2017.06.017.
  12. 12. Lee P, Bubeck S, Petro J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med. 2023;388(13):1233–9. doi: 10.1056/NEJMsr2214184.
  13. 13. Kung TH, Cheatham M, Medenilla A, et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health. 2023;2(2):e0000198. doi: 10.1371/journal.pdig.0000198.
  14. 14. Salvagno M, Taccone FS, Gerli AG. Can artificial intelligence help for scientific writing? Crit Care. 2023;27(1):75. doi: 10.1186/s13054-023-04380-2.
  15. 15. Ayers JW, Poliak A, Dredze M, et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern Med. 2023. doi: 10.1001/jamainternmed.2023.1838.
  16. 16. Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors.2017.
  17. 17. Liu H, Ning R, Teng Z, et al. Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4. arXiv preprint arXiv:230403439. 2023.
  18. 18. Wong A, Otles E, Donnelly JP, et al. External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA Intern Med. 2021;181(8):1065–70. doi: 10.1001/jamainternmed.2021.2626.
  19. 19. Smith H. Clinical AI: opacity, accountability, responsibility and liability. Ai & Society. 2020;36(2):535–45. doi: 10.1007/s00146-020-01019-6.
  20. 20. Daneshjou R, Smith MP, Sun MD, Rotemberg V, Zou J. Lack of Transparency and Potential Bias in Artificial Intelligence Data Sets and Algorithms: A Scoping Review. JAMA Dermatol. 2021;157(11):1362–9. doi: 10.1001/jamadermatol.2021.3129.
  21. 21. Noseworthy PA, Attia ZI, Brewer LC, et al. Assessing and Mitigating Bias in Medical Artificial Intelligence: The Effects of Race and Ethnicity on a Deep Learning Model for ECG Analysis. Circ Arrhythm Electrophysiol. 2020;13(3):e007988. doi: 10.1161/CIRCEP.119.007988.
DOI: https://doi.org/10.2478/jccm-2023-0017 | Journal eISSN: 2393-1817 | Journal ISSN: 2393-1809
Language: English
Page range: 61 - 63
Submitted on: Apr 28, 2023
Accepted on: Apr 30, 2023
Published on: May 8, 2023
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Razvan Azamfirei, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.