Have a personal or library account? Click to login
The Relationship between Asset Size and Performance in Islamic Banks: An Application with SWARA-AHP-COPRAS Methods in the Covid-19 Era Cover

The Relationship between Asset Size and Performance in Islamic Banks: An Application with SWARA-AHP-COPRAS Methods in the Covid-19 Era

Open Access
|Jun 2025

References

  1. Akçakanat, Ö., Eren, H., Aksoy, E., & Ömürbek, V. (2017). Bankacilik sektöründe ENTROPI ve WASPAS yöntemleri ile performans değerlendirmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 285–300. https://dergipark.org.tr/en/pub/sduiibfd/issue/52993/703045
  2. Akgül, Y. (2019). Çok kriterli karar verme yöntemleriyle Türk bankacilik sisteminin 2010-2018 yillari arasindaki performansinin analizi. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 4(4), 567–582. https://doi.org/10.29106/fesa.655722
  3. Altınay Tarakçıoğlu, A., Doğan, M., & Kevser, M. (2022). Comparing the Financial Performance of Islamic Banks in 10 Countries: New Evidence using Entropy and WASPAS Methods. The Economics and Finance Letters, 9(2), 197–210. https://doi.org/10.18488/29.v9i2.3110
  4. Babacan, A., & Tuncay, M. (2022). Türk Enerji Sektöründe Çalışma Sermayesi ve Finansal Performans Arasindaki Etkileşim: Swara, Ahp Ve Topsis Yöntemleriyle Karşılaştırmalı Bir Araştırma. Mehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(3), 1976–2005. https://doi.org/10.30798/makuiibf.1097378
  5. Beck, T., Demirguc-Kunt, A., & Merrouche, O. (2013). Islamic vs. conventional banking: Business model, efficiency and stability. Journal of Banking & Finance, 37(2), 433–447. https://doi.org/DOI10.1016/j.jbankfin.2012.09.016
  6. Çakalı, K. R., & ÇAKALI, K. R. (2022). Performance evaluation of deposit banks with financial ratios: Combined use of objective and subjective criteria weighting methods (Combined entropy-SWARA …. Alanya Akademik Bakış, 6(2), 2351–2377. https://dergipark.org.tr/en/pub/alanyaakademik/issue/70088/1056754
  7. Čereška, A., Zavadskas, E. K., Cavallaro, F., Podvezko, V., Tetsman, I., & Grinbergienė, I. (2016). Sustainable assessment of aerosol pollution decrease applying multiple attribute decision-making methods. Sustainability, 8(7), 586.
  8. Demir, G. (2022). Analysis of the financial performance of the deposit banking sector in the Covid-19 period with LMAW-DNMA methods. In International Journal of Insurance and Finance. scholar.archive.org. https://scholar.archive.org/work/li5gjtmbx5dupe7mneg3frtvda/access/wayback/https://www.ijif.net/public/admin/uploads/sayfalar/178/makale-2.pdf
  9. Demirgüç-Kunt, A., Pedraza, A., & Ruiz-Ortega, C. (2021). Banking sector performance during the COVID-19 crisis. Journal of Banking & Finance, 133, 106305. https://doi.org/10.1016/j.jbankfin.2021.106305
  10. Doğan, M. (2013). Katılım ve Geleneksel Bankaların Finansal Performanslarının Karşılaştırılması: Türkiye Örneği. Turkish Association of Accounting & Finance Academicians, 58, 175–188. http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=87114359&site=ehost-live
  11. Doumpos, M., & Zopounidis, C. (2010). A multicriteria decision support system for bank rating. In Decision support systems. Elsevier. https://www.sciencedirect.com/science/article/pii/S0167923610001089
  12. El Tiby, A. M. (2011). Islamic banking: How to manage risk and improve profitability (Vol. 640). John Wiley & Sons.
  13. Elmas, B., & Yetim, A. (2021). Katılım bankalarının finansal performanslarının TOPSIS yöntemi ile uluslararası boyutta değerlendirilmesi. International Journal of Islamic Economics and Finance Studies, 7(3), 230–263.
  14. Erdas, M. L., & Ezanoglu, Z. (2022). How do bank-specific factors impact non-performing loans: Evidence from G20 countries. Journal of Central Banking Theory and Practice, 11(2), 97–122.
  15. Erdogan, H. H. (2023). Entropy-based Waspas approach for financial performance in the Covid-19 era: Evidence from Islamic countries. Financial Internet Quarterly, 19(3), 48–61. https://doi.org/10.2478/fiqf-2023-0018
  16. Erdoğan, S., Gedikli, A., & Derindağ, M. R. (2020). An Investigation of Iran’s Banking System: Challenges and Remedies*. Bilimname XLI, 1(November 2018), 957–990.
  17. Eyceyurt Batır, T. (2019). Türkiye’de Kamu Katılım Bankalarının Bankacılık Sektörü Bazında Değerlendirilmesi: CAMELS Analizi İle 2015-2017 Yıllarına İlişkin Bir İnceleme. Muhasebe ve Finansman Dergisi, 83, 193–212. https://doi.org/10.25095/mufad.579969
  18. Eyceyurt Batır, T. (2023). Covid-19 Pandemi Sürecinde Bankacilik Sektörü Performansinin Çok Kriterli Karar Verme Yöntemleri ile Karşılaştırmalı Analizi:“Critic-Edas Yaklaşımı Kapsaminda Bir İnceleme.” Uluslararası Muhasebe ve Finans Araştırmaları Dergisi, 4(2), 186–203.
  19. Eyceyurt Batır, T., & Güngör, B. (2016). Türkiye’de bankaların kârlılık belirleyicilerinin katılım bankaları ve mevduat bankaları bazında karşılaştırılması. Bankacılar Dergisi, 99(99), 74–98.
  20. Eyceyurt Batır, T., Volkman, D. A., & Gungor, B. (2017). Determinants of bank efficiency in Turkey: Participation banks versus conventional banks. Borsa Istanbul Review, 17(2), 86–96. https://doi.org/10.1016/j.bir.2017.02.003
  21. Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: state of the art surveys (J. Figueira, S. Greco, & M. Ehrgott (eds.)). Springer Science & Business Media.
  22. Gençtürk, M., Senal, S., & Aksoy, E. (2021). COVID-19 Pandemisinin Katılım Bankaları Üzerine Etkilerinin Bütünleşik CRITIC-MARCOS Yöntemi İle İncelenmesi. Muhasebe ve Finansman Dergisi, 92, 139–160. https://doi.org/10.25095/mufad.937185
  23. Ghosh, R., & Saima, F. N. (2021). Resilience of commercial banks of Bangladesh to the shocks caused by COVID-19 pandemic: an application of MCDM-based approaches. In Asian Journal of Accounting Research. emerald.com. https://doi.org/10.1108/AJAR-10-2020-0102
  24. Gülcemal Tuba, & Doğan Mesut. (2022). Covid 19 Pandemisinin Bankaların Finansal Performansı Üzerindeki Etkisi: Karşılaştırmalı Bir Analiz. Selçuk Üniversitesi Sosyal Bilimler MYO Dergisi, 25(2), 727–735. https://www.tbb.org.tr
  25. Hussain, S., Chen, J.-H., & Hussain, T. (2024). Decision-Making Framework for Improving Bank Performance in Emerging Markets: The Analysis of AHP-TOPSIS and AHP-GRA Models. Journal of Central Banking Theory and Practice, 3, 191–218.
  26. ICD. (2022). Refinitiv Islamic Finance Development Report 2022. https://icdps.org/uploads/files/ICDRefinitivifdi-report-20221669878247_1582.pdf
  27. Iddouch, K., El Badraoui, K., & Ouenniche, J. (2023). Landscape of Research on the Efficiency Profiles of Islamic Banks using DEA: Survey, Classification and Critical Analysis of the Literature. International Journal of Business, 28(3).
  28. Ikra, S. S., Rahman, M. A., Wanke, P., & Azad, M. A. K. (2021). Islamic banking efficiency literature (2000–2020): a bibliometric analysis and research front mapping. International Journal of Islamic and Middle Eastern Finance and Management, 14(5), 1043–1060. https://doi.org/10.1108/IMEFM-05-2020-0226
  29. Iqbal, M., & Molyneux, P. (2005). Thirty Years of Islamic Banking: History, Performance, and Prospects. Palgrave Macmillan.
  30. Keršulienė, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. Technological and Economic Development of Economy, 17(4), 645–666.
  31. Kettell, B. (2011). Introduction to Islamic banking and finance (Vol. 1). John Wiley & Sons.
  32. Mastilo, Z., Štilić, A., Gligović, D., & Puška, A. (2024). Assessing the banking sector of Bosnia and Herzegovina: An analysis of financial indicators through the MEREC and MARCOS methods. Journal of Central Banking Theory and Practice, 13(1), 167–197.
  33. Myers, J. H., & Alpert, M. I. (1968). Determinant buying attitudes: meaning and measurement. Journal of Marketing, 32(4_part_1), 13-20.
  34. Rehman, A. U., Aslam, E., & Iqbal, A. (2022). Intellectual capital efficiency and bank performance: Evidence from islamic banks. Borsa Istanbul Review, 22(1), 113–121.
  35. Saaty, T. L. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234–281.
  36. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
  37. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.
  38. Sarı, T. (2020). Banka Performans Ölçümünde Topsis ve Promethee Yöntemlerinin Karşılaştırılması. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 34(1), 103–122. https://doi.org/10.16951/atauniiibd.480238
  39. Teknomo, K. (2006). Analytic hierarchy process (AHP) tutorial. In Revoledu.com (Vol. 6, Issue 4).
  40. Thi My Phan, H., Daly, K., & Akhter, S. (2016). Bank efficiency in emerging Asian countries. Research in International Business and Finance, 38, 517–530. https://doi.org/http://dx.doi.org/10.1016/j.ribaf.2016.07.012
  41. Wang, Z.-L., You, J.-X., Liu, H.-C., & Wu, S.-M. (2017). Failure mode and effect analysis using soft set theory and COPRAS method. International Journal of Computational Intelligence Systems, 10(1), 1002–1015.
  42. Wanke, P., Azad, M. A. K., Barros, C. P., & Hassan, M. K. (2016). Predicting efficiency in Islamic banks: An integrated multicriteria decision making (MCDM) approach. Journal of International Financial Markets Institutions & Money, 45, 126–141. https://doi.org/10.1016/j.intfin.2016.07.004
  43. Warde, I. (2010). Islamic finance in the global economy. Edinburgh University Press.
  44. Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management science, 26(7), 641-658.
  45. Yalçın, N., & Ünlü, U. (2018). A multi-criteria performance analysis of initial public offering (IPO) firms using critic and vikor methods. Technological and Economic Development of Economy, 24(2), 534–560. https://doi.org/10.3846/20294913.2016.1213201
  46. Yayar, R., & Baykara, H. V. (2012). TOPSIS Yöntemi ile Katilim Bankalarinin Etkinligi ve Verimliligi Üzerine Bir Uygulama/An Implementation upon Efficiency and Productivity of Participation Banks with TOPSIS Method. Business and Economics Research Journal, 3(4), 21.
  47. Yılmaz, N. (2023). Performance Analysis of Banking by Using the Multi Criteria Decision Making Method: SECA. In H. Altıntaş, M. Mete, & N. Bolat Bozaslan (Eds.), International Theory, Research And Reviews In Social, Human And Administrative Sciences (pp. 359–375). seruvenyayinevi. com. https://www.seruvenyayinevi.com/Webkontrol/uploads/Fck/socialekim2023.pdf#page=367
  48. Zavadskas, E. K., Kaklauskas, A., & Šarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Vilnius Tech. https://etalpykla.vilniustech.lt/handle/123456789/111916
  49. Zavadskas, E. K., & Turskis, Z. (2011). Multiple criteria decision making (MCDM) methods in economics: An overview. Technological and Economic Development of Economy, 17(2), 397–427. https://doi.org/10.3846/20294913.2011.593291
Language: English
Page range: 195 - 224
Submitted on: Aug 12, 2024
Accepted on: Feb 11, 2025
Published on: Jun 3, 2025
Published by: Central Bank of Montenegro
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Tuğba Eyceyurt Batir, Adem Babacan, published by Central Bank of Montenegro
This work is licensed under the Creative Commons Attribution 4.0 License.