References
- Abakah, E.J.A., Gil-Alana, L.A., Madigu, G. and Romero-Rojo, F. (2020). Volatility persistence in cryptocurrency markets under structural breaks. Int. Rev. Econ. Financ. 69, 680–691. https://doi.org/10.1016/j.iref.2020.06.035
- Andreou, E. and Ghysels, E. (2009). Handbook of Financial Time Series. Handb. Financ. Time Ser. 839–840. https://doi.org/10.1007/978-3-540-71297-8
- Aue, A. and Horváth, L. (2013). Structural breaks in time series. J. Time Ser. Anal. 34, 1–16. https://doi.org/10.1111/j.1467-9892.2012.00819.x
- Avşarlıgil, N. (2020). Covid-19 Salgınının Finansal Sisteme Etkileri Üzerine Bir İnceleme. Alanya Akad. Bakış 665–682. https://doi.org/10.29023/alanyaakademik.735214
- Bai, J. and Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica 66, 47. https://doi.org/10.2307/2998540
- Bai, J. and Perron, P. (2003). Computation and analysis of multiple structural change models. J. Appl. Econom. 18, 1–22. https://doi.org/10.1002/jae.659
- Beneki, C., Koulis, A., Kyriazis, N.A. and Papadamou, S. (2019). Investigating volatility transmission and hedging properties between BTC and Ethereum. Res. Int. Bus. Financ. 48, 219–227. https://doi.org/10.1016/j.ribaf.2019.01.001
- Bentes, S.R. (2022). On the stylized facts of precious metals’ volatility: A comparative analysis of pre- and during COVID-19 crisis. Phys. A Stat. Mech. its Appl. 600, 127528. https://doi.org/10.1016/j.physa.2022.127528
- Bhatia, M. (2022). Stock Market Efficiency and COVID-19 with Multiple Structural Breaks: Evidence from India. Glob. Bus. Rev. 1–12. https://doi.org/10.1177/09721509221110372
- Bouri, E., a, L.A., Gupta, R. and Roubaud, D. (2019). Modelling long memory volatility in the BTC market: Evidence of persistence and structural breaks. Int. J. Financ. Econ. 24, 412–426. https://doi.org/10.1002/ijfe.1670
- Bouri, E., Shahzad, S. J. H., & Roubaud, D. (2019). Co-explosivity in the cryptocurrency market. Finance Research Letters, 29, 178-183.
- Bumpass, D., Douglas, C., Ginn, V. and Tuttle, M.H. (2019). Testing for short and long-run asymmetric responses and structural breaks in the retail gasoline supply chain. Energy Econ. 83, 311–318. https://doi.org/10.1016/j.eneco.2019.07.021
- Carrion-I-Silvestre, J.L., Kim, D. and Perron, P. (2009). GLS-based unit root tests with multiple structural breaks under both the null and the alternative hypotheses. Econom. Theory 25, 1754–1792. https://doi.org/10.1017/S0266466609990326
- Cheah, E. T., and Fry, J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics letters, 130, 32-36.
- Cheung, Y. and Lai, K.S. (1997). Bandwidth Selection, Prewhitening, and the Power of the Phillips-Perron Test Author ( s ): Yin-Wong Cheung and Kon S . Lai Published by : Cambridge University Press Stable URL : https://www.jstor.org/stable/3532622 Bandwidth Selection, Prewhitening, A 13, 679–691.
- Corbet, S., Lucey, B., & Yarovaya, L. (2018). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81-88.
- Dickey, D, A. and Fuller, W.A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 74, 427–431. https://doi.org/https://doi.org/10.1080/01621459.1979.10482531
- Ercan, H. and Karahanoğlu, İ. (2019). A Wavelet Coherence Analysis: Contagion in Emerging Countries Stock Markets. Periodica Polytechnica Social and Management Sciences, 27(2), 99-107.
- Erol, E. and Saghaian, S.H. (2022). The COVID-19 Pandemic and Dynamics of Price Adjustment in the US Beef Sector. Sustain. 14. https://doi.org/10.3390/su14084391
- Esteve, V. and Requena, F., 2006. A cointegration analysis of car advertising and sales data in the presence of structural change. Int. J. Econ. Bus. 13, 111–128. https://doi.org/10.1080/13571510500520036
- Fabris, N. and Ješić, M. (2023). Are Gold and Bitcoin a Safe Haven for European Indices?. Journal of Central Banking Theory and Practice, 12(1), 27-44.
- Ghabri, Y., Ben Rhouma, O., Gana, M., Guesmi, K. and Benkraiem, R. (2022). Information transmission among energy markets, cryptocurrencies, and stablecoins under pandemic conditions. Int. Rev. Financ. Anal. 82, 102197. https://doi.org/10.1016/J.IRFA.2022.102197
- Hafner, C. M. (2020). Testing for bubbles in cryptocurrencies with time-varying volatility. Journal of Financial Econometrics, 18(2), 233-249.
- James, N. and Menzies, M. (2021). Efficiency of communities and financial markets during the 2020 pandemic. Chaos 31. https://doi.org/10.1063/5.0054493
- Kalmaz, D.B. and Adebayo, T.S. (2020). Ongoing debate between foreign aid and economic growth in Nigeria: a wavelet analysis. Soc Sci Q, 101(5):2032–2051
- Karavias, Y., Narayan, P.K. and Westerlund, J. (2022). Structural Breaks in Interactive Effects Panels and the Stock Market Reaction to COVID-19. J. Bus. Econ. Stat. 0, 1–14. https://doi.org/10.1080/07350015.2022.2053690
- Katsiampa, P. (2019). Volatility co-movement between BTC and Ether. Finance Research Letters, 30, 221-227.
- Kılcı, E.N. (2021). A study on confidence indexes in Turkey under structural breaks for the period covering the Covid-19 pandemic. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilim. Fakültesi Derg. 14, 948–960. https://doi.org/10.25287/ohuiibf.795657
- Kumar, A.and Ajaz, T. (2019). Co-movement in crypto-currency markets: evidences from wavelet analysis. Financial Innovation, 5(1), 1-17.
- Lee, Y. and Rhee, J.H. (2022). A VECM analysis of BTC price using time-varying cointegration approach. J. Deriv. Quant. Stud. 선물연구 30, 197–218. https://doi.org/10.1108/jdqs-01-2022-0001
- Liu, J., Wu, S. and Zidek, J. V. (1997). On Segmented Multivariate Regression. Stat. Sin. 7, 497–525.
- Luburić, R. (2021). Crisis Prevention and the Coronavirus Pandemic as a Global and Total Risk of Our Time. Journal of Central Banking Theory and Practice, 10(1), 55-74.
- Makarov, I. and Schoar, A. (2020). Trading and arbitrage in cryptocurrency markets. Journal of Financial Economics, 135(2), 293-319.
- Mandaci, P.E. and Cagli, E.C. (2022). Herding intensity and volatility in cryptocurrency markets during the COVID-19. Financ. Res. Lett. 46, 102382. https://doi.org/10.1016/j.frl.2021.102382
- Marashdeh, H. A. and Shrestha, M. B. (2010). Stock market integration in the GCC countries. International Research Journal of Finance and Economics, 37, 104–114.
- Mensi, W., Al-Yahyaee, K.H. and Kang, S.H. (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from BTC and Ethereum. Financ. Res. Lett. 29, 222–230. https://doi.org/10.1016/j.frl.2018.07.011
- Morlet, J., Arens, G., Fourgeau, E. and Giard, D. (1982). Wave propagation and sampling theory; Part II, Sampling theory and complex waves. Geophysics, 47(2), 222-236.
- Nitithumbundit, T. and Chan, J.S.K. (2022). Covid-19 impact on Cryptocurrencies market using Multivariate Time Series Models. Q. Rev. Econ. Financ. 86, 365–375. https://doi.org/10.1016/j.qref.2022.08.006
- Özbay, F. and Özcan, A. (2021). The examined of the influence of Covid-19 on e-commerce and consumer behaviour: A study on Turkey. Aydın İktisat Fakültesi Derg. 6, 21–33.
- Özbay, F. and Tosun, N. (2022). The Fear Impact of COVID-19 on Stock Markets and Exchange Rates: An Empirical Application on Turkey, in: Handbook of Research on Global Networking Post COVID-19. IGI Global Publısher of Tımely Knowledge, pp. 1–22. https://doi.org/10.4018/978-1-7998-8856-7.ch001
- Panagiotis, A., Efthymios, K., Anastasios-Taxiarchis, K., & Athanasios, P. (2020). GARCH Modelling of High-Capitalization Cryptocurrencies’ Impacts During Bearish Markets. Journal of Central Banking Theory and Practice, 9(3), 87-106.
- Perron, P. (2006). Dealing with Structural Breaks, Palgrave handbook of econometrics.
- Phillips, P.C.B. (1987). Time Series Regression with a Unit Root. Econometrica 55, 277. https://doi.org/10.2307/1913237
- Phillips, P.C.B. and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika 75, 335–346. https://doi.org/https://doi.org/10.1093/biomet/75.2.335
- Phiri, E. and Wang, W. (2022). Time Series Analysis and structural break detection: A case of Zambia’s CPI. Int. J. Econ. Policy 2, 33–43. https://doi.org/10.47941/ijecop.914
- Qiao, X., Zhu, H., & Hau, L. (2020). Time-frequency co-movement of cryptocurrency return and volatility: Evidence from wavelet coherence analysis. International Review of Financial Analysis, 71, 101541.
- /repeated
- Reeves, J., Chen, J., Wang, X.L., Lund, R. and Lu, Q.Q. (2007). A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915. https://doi.org/10.1175/JAM2493.1
- Rubbaniy, G., Khalid, A. A.and& Samitas, A. (2021). Are cryptos safe-haven assets during Covid-19? Evidence from wavelet coherence analysis. Emerging Markets Finance and Trade, 57(6), 1741-1756.
- Stoumbos, Z.G., Reynolds, M.R., Ryan, T.P. and Woodall, W.H. (2000). The state of statistical process control as we proceed into the 21st century. J. Am. Stat. Assoc. 95, 992–998. https://doi.org/10.1080/01621459.2000.10474292
- Telli, Ş. and Chen, H. (2020). Structural breaks and trend awareness-based interaction in crypto markets. Phys. A Stat. Mech. its Appl. 558, 124913. https://doi.org/10.1016/j.physa.2020.124913
- Thies, S. and Molnár, P. (2018). Bayesian change point analysis of BTC returns. Financ. Res. Lett. 27, 223–227. https://doi.org/10.1016/j.frl.2018.03.018
- Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61-78.
- Torrence, C. and Webster, P. J. (1999). Interdecadal changes in the ENSO– monsoon system. Journal of Climate, 12(8), 2679-2690.
- Wu, C. (2021). Window effect with Markov-switching GARCH model in cryptocurrency market. Chaos, Solitons and Fractals 146, 110902. https://doi.org/10.1016/j.chaos.2021.110902
- Yang, L., Cai, X. J., Zhang, H. and Hamori, S. (2016). Interdependence of foreign exchange markets: A wavelet coherence analysis. Economic Modelling, 55, 6-14.
- Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Stat. Probab. Lett. 6, 181–189. https://doi.org/https://doi.org/10.1016/0167-7152(88)90118-6
- Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. In Handbook of digital currency (pp. 31-43). Academic Press.
- Zeileis, A., Leisch, F., Hornik, K., and Kleiber, C. (2002). Strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38. https://doi.org/10.18637/jss.v007.i02
- Zeren, F. and Hızarcı, A. (2020). the Impact of Covid-19 Coronavirus on Stock Markets: Evidence From Selected Countries. Muhasebe ve Finans İncelemeleri Derg. 1, 78–84. https://doi.org/10.32951/mufider.706159.
- Zhang, Y. J.and& Wu, Y. B. (2019). The time-varying spillover effect between WTI crude oil futures returns and hedge funds. International Review of Economics & Finance, 61, 156–169.