Have a personal or library account? Click to login
Econophysical bourse volatility – Global Evidence Cover
Open Access
|Jun 2020

References

  1. 1. A. Abhyankar, L. S. C. & W. W. (1995). Moment condition failure in high frequency financial data: evidence from the S&P 500. Applied Economics Letters, 2(8), 288–290. https://doi.org/DOI:10.1080/13504859535725810.1080/135048595357258
  2. 2. Ajaz, T. (2019). Nonlinear Reaction functions: Evidence from India. Journal of Central Banking Theory and Practice, 8(1), 111–132. https://doi.org/10.2478/jcbtp-2019-000610.2478/jcbtp-2019-0006
  3. 3. Arms, R. W. (1996). Trading without Fear (1st ed.). John Wiley and Sons.
  4. 4. Australian Securities Exchange. (2013). Australian Share Ownership Study. Sydney. Retrieved from https://www.asx.com.au/documents/resources/australian-share-ownership-study-2014.pdf
  5. 5. Bentes, S. R., & Menezes, R. (2012). Entropy: A new measure of stock market volatility? Journal of Physics: Conference Series, 394(1). https://doi.org/10.1088/1742-6596/394/1/01203310.1088/1742-6596/394/1/012033
  6. 6. Cotfas, L. A. (2013). A quantum mechanical model for the rate of return. Romanian Reports in Physics, 65(2), 327-333.
  7. 7. Dhaene, J., Dony, J., Forys, M., Linders, D., & Schoutens, W. (2011). FIX - The fear index. Measuring market fear. FBE Research Report AFI_1155, (January), 1–17. https://doi.org/10.2139/ssrn.188833510.2139/ssrn.1888335
  8. 8. Dorsey, D. (1993). Technical Analysis of Stocks and Commodities, New York.
  9. 9. Dumičić, M. (2019). Linkages between Fiscal Policy and Financial (In) Stability. Journal of Central Banking Theory and Practice, 8(1), 97–109. https://doi.org/10.2478/jcbtp-2019-000510.2478/jcbtp-2019-0005
  10. 10. Fabris, N. (2018). Challenges for modern monetary policy. Journal of Central Banking Theory and Practice, 7(2), 5–24. https://doi.org/10.2478/jcbtp-2018-001010.2478/jcbtp-2018-0010
  11. 11. Ghosh, B., Krishna, M., Rao, S., Kozarević, E., & Pandey, R. K. (2018). Predictability and herding of bourse volatility: an econophysics analogue. Investment Management and Financial Innovations, 15(2), 317–326. https://doi.org/10.21511/imfi.15(2).2018.2810.21511/imfi.15(2).2018.28
  12. 12. Ghosh, B., & Kozarevic, E. (2018). Identifying explosive behavioral trace in the CNX nifty index: A quantum finance approach. Investment Management and Financial Innovations, 15(1), 208–223. https://doi.org/10.21511/imfi.15(1).2018.1810.21511/imfi.15(1).2018.18
  13. 13. Ghosh, B. & Kozarević, E. (2019). Multifractal analysis of volatility for detection of herding and bubble: evidence from CNX Nifty HFT. Investment Management and Financial Innovations, 16(3), 182-193. doi:10.21511/imfi.16(3).2019.1710.21511/imfi.16(3).2019.17
  14. 14. Gopikrishnan, P., Meyer, M., Amaral, L. A. N., & Stanley, H. E. (1998). Inverse cubic law for the distribution of stock price variations. European Physical Journal B, 3(2), 139–140. https://doi.org/10.1007/s10051005029210.1007/s100510050292
  15. 15. Haug, E., & Taleb, N. N. (2007). Why we have never used the Black-Scholes-Merton option pricing formula. Social Science Research Network, (January), 1–11. https://doi.org/10.2139/ssrn.1012075
  16. 16. Jakimowicz, A., & Juzwiszyn, J. (2015). Balance in the turbulent world of economy. Acta Physica Polonica A, 127(3), A78–A85. https://doi.org/10.12693/APhysPolA.127.A-7810.12693/APhysPolA.127.A-78
  17. 17. L. Bachelier. (1900). Th´eorie de la sp´ eculation. Ann. Sci. Ecole Norm. Sup, ISSN 0012-9593, 17, 21–86. Retrieved from http://eudml.org/doc/8114610.24033/asens.476
  18. 18. Laloux, L., Potters, M., Cont, R., Aguilar, J. P., & Bouchaud, J. P. (1998). Are financial crashes predictable? Europhys. Lett., 45, 1-5.10.1209/epl/i1999-00122-9
  19. 19. Leora Klapper, Annamaria Lusardi, & Peter van Oudheusden. (2014). Financial Literacy Around the World: Leora Klapper, World Bank Development Research Group Annamaria Lusardi, The George Washington University School of Business Peter van Oudheusden, World Bank Development Research Group INSIGHTS FROM THE STANDARD & POOR’. The Standard & Poor’S Ratings Services Global Financial Literacy Survey, 10(04), 509–525. Retrieved from https://www.mhfi.com/corporate-responsibility/global-financial-literacy-survey
  20. 20. Los, C. A. (2004). Measuring Financial Cash Flow and Term Structure Dynamics. SSRN Electronic Journal.
  21. 21. Mandelbrot, B. and R. L. H. (2004). Misbehavior of markets. Basic Books.
  22. 22. Mantegna, R. N., & Stanley, H. E. (1995). Scaling behaviour in the dynamics of an economic index. Nature. https://doi.org/10.1038/376046a010.1038/376046a0
  23. 23. Ormos, M., & Timotity, D. (2016). Market microstructure during financial crisis: Dynamics of informed and heuristic-driven trading. Finance Research Letters, 1–15. https://doi.org/10.1016/j.frl.2016.06.00310.1016/j.frl.2016.06.003
  24. 24. Pan, R. K., & Sinha, S. (2008). Inverse-cubic law of index fluctuation distribution in Indian markets. Physica A: Statistical Mechanics and Its Applications, 387(8–9), 2055–2065. https://doi.org/10.1016/j.physa.2007.11.03110.1016/j.physa.2007.11.031
  25. 25. Samuelson, P. A. (1965). Rational Theory of Warrant Pricing. Industrial Management Review, 6(2), 13–39.
  26. 26. Samuelson, P. A. (1969). Classical and Neoclassical Theory. In R. W. Clower (Ed.), Monetary Theory (pp. 170–190). London: Penguin.
  27. 27. Sinha, S., Thess, M and Markose, T. (2013). How Unstable Are Complex Financial Systems? Analyzing an Inter-bank Network of Credit Relations. In Econophysics of Systemic Risk and Network Dynamics, New Economic Windows (Vol. 13). Springer Verlag. https://doi.org/10.1007/978-88-470-2553-0_510.1007/978-88-470-2553-0_5
  28. 28. Zhang, C., & Huang, L. (2010a). A quantum model for the stock market. Physica A: Statistical Mechanics and Its Applications, 389(24), 389(24), 5769–5775. https://doi.org/10.1016/j.physa.2010.09.00810.1016/j.physa.2010.09.008
  29. 29. Zhang, C., & Huang, L. (2010b). A quantum model for the stock market. Physica A: Statistical Mechanics and Its Applications, 389(24), 5769–5775. https://doi.org/10.1016/J.PHYSA.2010.09.00810.1016/j.physa.2010.09.008
  30. 30. Zhang, Q., Sornette, D., BalcIlar, M., Gupta, R., Ozdemir, Z. A., & Yetkiner, H. (2016). LPPLS bubble indicators over two centuries of the S&P 500 index. Physica A: Statistical Mechanics and Its Applications, 458. https://doi.org/10.1016/j.physa.2016.03.10310.1016/j.physa.2016.03.103
Language: English
Page range: 87 - 107
Submitted on: Dec 4, 2018
Accepted on: Aug 14, 2019
Published on: Jun 2, 2020
Published by: Central Bank of Montenegro
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Bikramaditya Ghosh, Krishna MC, published by Central Bank of Montenegro
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.