Have a personal or library account? Click to login
Assessment of Land - Use Change Effects on Future Beekeeping Suitability Via CA-Markov Prediction Model Cover

Assessment of Land - Use Change Effects on Future Beekeeping Suitability Via CA-Markov Prediction Model

By: Fatih Sari  
Open Access
|Aug 2020

References

  1. Abou-Shaara, H.F., Al-Ghamdi, A.A., & Mohamed A.A. (2013). A Suitability Map for Keeping Honey Bees Under Harsh Environmental Conditions Using Geographical Information System. World Applied Sciences Journal, 22, 1099–1105. DOI: 10.5829/idosi.wasj.2013.22.08.7384
  2. Agarwal, C., Green, G.M., Grove, J.M., Evans, T.P., Schweik, C.M. (2002). A review and assessment of land-use change models: dynamics of space, time, and human choice, Gen. Tech. Rep. NE-297, U.S. Department of Agriculture, Forest Service, Northeastern Research Station. Newtown Square, PA. p 61.
  3. Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., & Klein, A.M. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103(9), 1579–1588. DOI: 10.1093/aob/mcp076
  4. Amiri, F., & Shariff, M.A. (2012). Application of geographic information systems in land use suitability evaluation for beekeeping: A case study of Vahregan watershed (Iran). African Journal of Agricultural Research, 7(1), 89–97. DOI:10.5897/AJAR10.1037
  5. Baker, W.L. (1989). A review of models of landscape change. Landscape Ecology, 2, 111–133
  6. Camargo, S.C., Garcia, R.C., Feiden, A., Vasconcelos, E.S., Pires., B.G. ... Pereira, D., J. (2014). Implementation of a geographic information system (GIS) for the planning of beekeeping in the west region of Paraná. Annals of the Brazilian Academy of Sciences, 86(2), 955–971. http://dx.doi.org/10.1590/0001-3765201420130278
  7. Damián, G.C. (2016). GIS-based optimal localisation of beekeeping in rural Kenya Master degree thesis, 30/credits in Master in Geographical Information Sciences Department of Physical Geography and Ecosystems Science, Lund University
  8. Eastman, J.R. (2009). IDRISI guide to GIS and image processing Accessed in IDRISI Selva 17 (pp. 182–185). Worcester, MA: Clark University.
  9. Estoque, R.C., & Murayama, Y. (2010). Suitability Analysis for Beekeeping Sites in La Union, Philippines, Using GIS and Multi-Criteria Evaluation Techniques. Research Journal of Applied Sciences, 5(3), 242–253. DOI: 10.3923/rjasci.2010.242.253
  10. Estoque, R.C., & Murayama, Y. (2011). Suitability Analysis for Beekeeping Sites Integrating GIS & MCE Techniques. Spatial Analysis and Modeling in Geographical Transformation Process. 978-94-007-0670-5. Springer Netherlands.
  11. Fernandez, P., Roque, N., & Anjos, O. (2016). Spatial multicriteria decision analysis to potential beekeeping assessment. Case study: Montesinho Natural Park (Portugal). In: Sarjakoski, T., Santos, M.Y., Sarjakoski, L.T. (Eds.), 19th AGILE International Conference on Geographic Information Science - Geospatial Data in a Changing World, Helsinki, Finland.
  12. Gagniuc, P.A. (2017). Markov Chains: From Theory to Implementation and Experimentation. USA, NJ: John Wiley & Sons. pp. 1–235. ISBN 978-1-119-38755-8.
  13. Goulson, D., Nicholls, E., Botías, C., & Rotheray, E.L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229),1255957. DOI: 10.1126/science.1255957
  14. Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222, 3761–3772. https://doi.org/10.1016/j.ecolmodel.2011.09.009
  15. Halmy, M.W., Gessler, P.E., Hicke, J.A., & Salem, B.B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015
  16. He, C.Y., Okada, N., Zhang, Q.F., Shi, P.J., Li, J.G. (2008). Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape Urban Planning, 86, 79–91. https://doi.org/10.1016/j.landurbplan.2007.12.010
  17. Huang, W., Liu, H., Luan, Q., Jiang, Q., Liu, J., Liu, H. (2008). Detection and prediction of land use change in Beijing based on remote sensing and GIS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, 75–82.
  18. Lambin, E.F. (1997). Modeling and Monitoring Land-Cover Change Processes in Tropical Regions. Progress in Physical Geography, 21, 375–393. https://doi.org/10.1177/030913339702100303
  19. Maris, N., Mansor, S., & Shafri, H. (2008). Apicultural Site Zonation Using GIS and MultiCriteria Decision Analysis. Journal of Tropical Agricultural Science, 31(2), 147–162.
  20. Miguel, S., Pukkala, T., & Yeşil, A. (2014). Integrating pine honeydew honey production into forest management optimization. European Journal of Forest Research, 133 (3), 423–432. DOI: 10.1007/s10342-013-0774-2
  21. Mondal, S., Sharma, N., Garg, P.K., & Kappas, M. (2016). Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. The Egyptian Journal of Remote Sensing and Space Sciences, 19, 259–272. https://doi.org/10.1016/j.ejrs.2016.08.001
  22. Muller, M.R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9, 151–157.
  23. Oldroyd, P.B., & Nanork, P. (2009). Conservation of Asian honey-bees- Apidologie Bee Conservation, 40, 296–312. https://doi.org/10.1051/apido/2009021
  24. Otto, C.R.V., Roth, C.L., Carlson, B.L., & Smart, M.D. (2016). Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. PNAS, 113(37), 10430–10435. https://doi.org/10.1073/pnas.1603481113
  25. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P. (2003). Multi agent systems for the simulation of land-use and land-cover change: a review, Annals of the Association of American Geographers, 93, 314–337. https://doi.org/10.1111/1467-8306.9302004
  26. Pontius, J.R.G., & Malanson, J. (2005). Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Sciences, 19 (2), 243–265. https://doi.org/10.1080/13658810410001713434
  27. Spivak, M., Mader, E., Vaughan, M., & Euliss, N.H. (2011). The plight of the bees. Environmental Science Technology, 45(1), 34–38. https://doi.org/10.1021/es101468w
  28. Subedi, P., Subedi, K., & Thapa, B., (2013). Application of a Hybrid Cellular Automaton – Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences, 1(6), 126–132. DOI: 10.12691/aees-1-6-5
  29. Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.
  30. Saaty, T.L. (1980). The analytical hierarchy process. New York: Wiley.
  31. Saaty, T.L. (1994). Fundamentals of Decision Making and Priority Theory With The Analytical Hierarchy Process, RWS Publ. Pittsburg, 69–84.
  32. Saaty, T.L. (2001). Decision Making with Dependence and Feedback: The Analytic Network Process, 2nd edition, PRWS Publications, Pittsburgh PA.
  33. Saaty, T.L., & Vargas, LG. (1991). Prediction, Projection and Forecasting. Kluwer Academic Publishers, Dordrecht, 25.
  34. Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., ... Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774. DOI: 10.1126/science.287.5459.1770
  35. Sklar, F.H., & Costanza, R. (1991). The development of dynamic spatial models for landscape ecology: a review and prognosis. In M. G. Turner, & R. H. Gardner (Eds.), Ecological studies: Vol. 82. Quantitative methods in landscape Ecology (pp. 239–288). Berlin: Springer.
  36. Thomas, H., & Laurence, H.M. (2006). Modeling and projecting land-use and land-cover changes with a cellular automaton in considering landscape trajectories: An improvement for simulation of plausible future states; EARSeL eProc. 5 63–76.
  37. Wang, SQ., Zheng, XQ., Zang, XB. (2012). Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13, 1238 – 1245. https://doi.org/10.1016/j.proenv.2012.01.117
  38. Wu, F., (2002). Calibration of stochastic cellular automata: the application to rural–urban land conversions. International Journal of Geographical Information Sciences, 16, 795–818. https://doi.org/10.1080/13658810210157769
  39. Vanbergen, A.J., & the Insect Pollinators Initiative (2013). Threats to an ecosystem service: Pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251–259. https://doi.org/10.1890/120126
  40. Ye, B., & Bai, Z. (2008). Simulating land use/cover changes of Nenjiang County based on CA-Markov model. International Federation for Information Processing Publications IFIP, 258, 321–330.
  41. Zoccali, P., Malacrinò, A., Campolo, O., Laudani, F., Algeri, G.M., Giunti, G., ... Palmeri, V. (2017). A novel GIS-based approach to assess beekeeping suitability of Mediterranean lands. Saudi Journal of Biological Sciences, 24(5), 1045–1050. https://doi.org/10.1016/j.sjbs.2017.01.062
  42. URL1, Turkey Governmental Forest Statistics https://www.ogm.gov.tr/lang/en/Pages/Forests/StatisticalInfo.aspx (Accessed, 17.11.2018)
DOI: https://doi.org/10.2478/jas-2020-0020 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 263 - 276
Submitted on: Dec 23, 2019
Accepted on: May 21, 2020
Published on: Aug 16, 2020
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Fatih Sari, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.