Have a personal or library account? Click to login
Artificial Neural Network and Regression Models to Evaluate Rheological Properties of Selected Brazilian Honeys Cover

Artificial Neural Network and Regression Models to Evaluate Rheological Properties of Selected Brazilian Honeys

Open Access
|Nov 2020

References

  1. Abbasi-tarighat, M., Shahbazi, E., & Niknam, K. (2013). Simultaneous determination of Mn2+ and Fe3+ as complexes in some foods, vegetable and water samples by artificial neural networks. Food Chemistry, 138(2–3), 991–997. http://doi.org/10.1016/j.foodchem.2012.09.099
  2. Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., & Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering, 79, 1207–1213. http://doi.org/10.1016/j.jfoodeng.2006.04.048
  3. Ajala, S. O., & Betiku, E. (2015). Yellow Oleander Seed Oil Extraction Modeling and Process Parameters Optimization: Performance Evaluation of Artificial Neural Network and Response Surface Methodology. Journal of Food Processing and Preservation, 39, 1466–1474. http://doi.org/10.1111/jfpp.12366
  4. Al-Mahasneh, M. A., Rababah, T. M., & Ma’Abreh, A. S. (2013). Evaluating the combined effect of temperature, shear rate and water content on wild-flower honey viscosity using adaptive neural fuzzy inference system and artificial neural networks. Journal of Food Process Engineering, 36, 510–520. http://doi.org/10.1111/jfpe.12014
  5. Çelekli, A., Birecikligil, S. S., Geyik, F., & Bozkurt, H. (2012). Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model. Bioresource Technology, 103, 64–70. http://doi.org/10.1016/j.biortech.2011.09.106
  6. Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by a new type of nuclei. Journal of Food Process Engineering, 32(2009), 512–527. http://doi.org/10.1111/j.1745-4530.2007.00227.x
  7. Dahmoune, F., Remini, H., Dairi, S., Aoun, O., Moussi, K., Bouaoudia-Madi, N., … Madani, K. (2015). Ultrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: Comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recovery. Industrial Crops and Products, 77, 251–261. http://doi.org/10.1016/j.indcrop.2015.08.062
  8. Dobre, I., Georgescu, L. A., Alexe, P., Escuredo, O., & Seijo, M. C. (2012). Rheological behavior of different honey types from Romania. Food Research International, 49(1), 126–132. http://doi.org/10.1016/j.foodres.2012.08.009
  9. Faria, S., Alberto, C., Anjos, R., Nunes, R., Maria, R. (2015). Evaluation of extra virgin olive oil stability by artificial neural network. Food Chemistry, 179, 35–43. http://doi.org/10.1016/j.foodchem.2015.01.100
  10. Goktepe, A. B., Altun, S., Altintas, G., & Tan, O. (2008). Shear strength estimation of plastic clays with statistical and neural approaches. Building and Environment, 43, 849–860. http://doi.org/10.1016/j.buildenv.2007.01.022
  11. Herrmann, J., Brito, A., Trembley, J., & Grupa, U. (2013). Development of a rheological prediction model for food suspensions and emulsions. Journal of Food Engineering, 115(4), 481–485. http://doi.org/10.1016/j.jfoodeng.2012.05.034
  12. Karasu, S., Toker, S. O., Yilmaz, M. T., Karaman, S., Dertli, E. (2015). Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. Journal of Food Engineering, 150(150), 90–98. http://doi.org/10.1016/j.jfoodeng.2014.10.0040260-8774/?
  13. Kayacier, A., Yüksel, F., & Karaman, S. (2014). Dynamic mechanical spectra of selected Turkish honeys: Construction of predictive models for complex viscosity using two different nonlinear modeling techniques. International Journal of Food Properties, 17(June 2011), 93–110. http://doi.org/10.1080/10942912.2011.614985
  14. Khanlari, G. R., Heidari, M., Momeni, A. A., & Abdilor, Y. (2012). Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Engineering Geology, 131–132, 11–18. http://doi.org/10.1016/j.enggeo.2011.12.006
  15. Linder, R., & Po, S. J. (2003). A new neural network approach classifies olfactory signals with high accuracy. Food Quality and Preference, 14, 435–440. http://doi.org/10.1016/S0950-3293(03)00016-8
  16. Llave, Y. A., Hagiwara, T., & Sakiyama, T. (2012). Artificial neural network model for prediction of cold spot temperature in retort sterilization of starch-based foods. Journal of Food Engineering, 109(3), 553–560. http://doi.org/10.1016/j.jfoodeng.2011.10.024
  17. Mohanraj, M., Jayaraj, S., & Muraleedharan, C. (2012). Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems - A review. Renewable and Sustainable Energy Reviews, 16(2), 1340–1358. http://doi.org/10.1016/j.rser.2011.10.015
  18. Nayik, G. A., Dar, B. N., & Nanda, V. (2015). Physico-chemical, rheological and sugar profile of different honeys from Kashmir Valley of India. Arabian Journal of Chemistry, Avaible on. http://doi.org/10.1016/j.arabjc.2015.08.017
  19. Oroian, M. (2012). Physicochemical and rheological properties of Romanian honeys. Food Biophysics, 7, 296–307. http://doi.org/10.1007/s11483-012-9268-x
  20. Oroian, M. (2015). Influence of temperature, frequency and moisture content on honey viscoelastic parameters - Neural networks and adaptive neuro-fuzzy inference system prediction. LWT - Food Science and Technology, 63(2), 1309–1316. http://doi.org/10.1016/j.lwt.2015.04.051
  21. Phimolsiripol, Y., Siripatrawan, U., & Cleland, D. J. (2011). Weight loss of frozen bread dough under isothermal and fluctuating temperature storage conditions. Journal of Food Engineering, 106(2), 134–143. http://doi.org/10.1016/j.jfoodeng.2011.04.020
  22. Rahman, M. S., Rashid, M. M., & Hussain, M. A. (2012). Thermal conductivity prediction of foods by Neural Network and Fuzzy (ANFIS) modeling techniques. Food and Bioproducts Processing, 90(2), 333–340. http://doi.org/10.1016/j.fbp.2011.07.001
  23. Rai, P., Majumdar, G. C., & Dasgupta, S. (2005). Prediction of the viscosity of clarified fruit juice using artificial neural network: a combined effect of concentration and temperature. Journal of Food Engineering, 68, 527–533. http://doi.org/10.1016/j.jfoodeng.2004.07.003
  24. Ramzi, M., Kashaninejad, M., Salehi, F., Sadeghi Mahoonak, A. R., Ali Razavi, S. M. (2015). Modeling of rheological behavior of honey using genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system. Food Bioscience, 9, 60–67. http://doi.org/10.1016/j.fbio.2014.12.001
  25. Razmi-Rad, E., Ghanbarzadeh, B., Mousavi, S. M., Emam-djomeh, Z., Khazaei, J. (2007). Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by using artificial neural networks. Journal of Food Engineering, 81, 728–734. http://doi.org/10.1016/j.jfoodeng.2007.01.009
  26. Rossi, F., Velázquez, D., Monedero, I., & Biscarri, F. (2014). Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants. Expert Systems with Applications, 41(10), 4658–4669. http://doi.org/10.1016/j.eswa.2014.02.001
  27. Silva, V. M. Da, Torres Filho, R. D. A., & Resende, J. V. De. (2018). Rheological properties of selected Brazilian honeys as a function of temperature and soluble solid concentration. International Journal of Food Properties, 20(00), S2481–S2494. http://doi.org/10.1080/10942912.2017.1370599
  28. Silva, V. M. da, de Carvalho, L. A., de Oliveira, N. L., Torres Filho, R. de A., de Resende, J. V. (2016). Rheological and thermal properties of selected Brazilian honeys from various floral origins. Journal of Texture Studies, 47, 208–219. http://doi.org/10.1111/jtxs.12174
  29. Soltani, M., Omid, M., & Alimardani, R. (2014). Egg volume prediction using machine vision technique based on pappus theorem and artificial neural network. Journal of Food Science and Technology, 52(May), 3065–3071. http://doi.org/10.1007/s13197-014-1350-6
  30. Xi, J., Xue, Y., Xu, Y., & Shen, Y. (2013). Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols. Food Chemistry, 141(1), 320–326. http://doi.org/10.1016/j.foodchem.2013.02.084
  31. Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72, 372–377. http://doi.org/10.1016/j.jfoodeng.2004.12.017
  32. Zuluaga-Domínguez, C. M., Nieto-Veloza, A., & Quicazán-de-Cuenca, M. (2017). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1), 145–152. http://doi.org/10.1080/00218839.2017.1339521
DOI: https://doi.org/10.2478/jas-2020-0017 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 219 - 228
Submitted on: Jul 12, 2019
Accepted on: May 8, 2020
Published on: Nov 7, 2020
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Vanelle M. D. Silva, Wilian S. Lacerda, Jaime V. de Resende, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.