Have a personal or library account? Click to login

Prospects and Validity of Laboratory Cage Tests Conducted in Honeybee Research Part Two: New Possibilities for Use of Laboratory Cage Tests in Response to Challenges Revealed at the Turn of the 20th and 21st Centuries

Open Access
|Jul 2020

References

  1. Agarwal, M., Guzmán, M., Morales-Matos, C., Del Valle Díaz, R. A., Abramson, C. I., Giray, T. (2011). Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS ONE, 6(9), 1–9. https://doi.org/10.1371/journal.pone.0025371
  2. Audisio, M.C., Torres, M.J., Sabaté, D.C., Ibarguren, C., Apella, M.C. (2011). Properties of different lactic acid bacteria isolated from Apis mellifera L. beegut. Microbiological Research, 166, 1–13. https://doi.org/10.1016/j.micres.2010.01.003.
  3. Bąk, B., Wilde, J., & Siuda, M. (2010). Lekooporność roztoczy Varroa destructor na akarycydy w pasiekach północno-wschodniej Polski. In XLVII Naukowa Konferencja Pszczelarska (pp. 75–76). Puławy - Poland
  4. Biergans, S. D., Jones, J. C., Treiber, N., Galizia, C. G., Szyszka, P. (2012). DNA methylation mediates the discriminatory power of associative long-term memory in honeybees. PLoS ONE, 7(6), 1–7. https://doi.org/10.1371/journal.pone.0039349
  5. Blacquière, T., Smagghe, G., Van Gestel, C. A. M., & Mommaerts, V. (2012). Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology, 21(4), 973–992. https://doi.org/10.1007/s10646-012-0863-x
  6. Borsuk, G., Paleolog, J., Olszewski, K., & Strachecka, A. J. (2013). Laboratory assessment of the effect of nanosilver on longevity, sugar syrup ingestion, and infection of honeybees with Nosema spp. Medycyna Weterynaryjna, 69(12), 730–732.
  7. Borsuk, G., Kozłowska, M., Anusiewicz, M., & Paleolog, J. (2018). Nosema ceranae changes semen characteristics and damages sperm DNA in honeybee drones. Invertebrate Survival Journal, 15, 197–202.
  8. Brownlees, J., & Williams, C. H. (1993). Peptidases, peptides, and the mammalian blood-brain barrier. Journal of Neurochemistry, 60(3), 793–803. https://doi.org/10.1111/j.1471-4159.1993.tb03223.x
  9. Corona, M., Velarde, R. A., Remolina, S., Moran-Lauter, A., Wang, Y., Hughes, K. A., Robinson, G. E. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proceedings of the National Academy of Sciences, 104(17), 7128–7133. https://doi.org/10.1073/pnas.0701909104
  10. Costa, C., Lodesani, M., & Maistrello, L. (2010). Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie, 41(2), 141–150. https://doi.org/10.1051/apido/2009070
  11. Cremer, S., & Sixt, M. (2009). Analogies in the evolution of individual and social immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1513), 129–142. https://doi.org/10.1098/rstb.2008.0166
  12. Decourtye, A., Lacassie, E., & Pham-Delègue, M. (2003). Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Management Science, 59(3), 269–278. https://doi.org/10.1002/ps.631
  13. Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delègue, M. (2004). Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicology and Environmental Safety, 57(3), 410–419. https://doi.org/10.1016/j.ecoenv.2003.08.001
  14. Dyer, A. G. (2005). Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. Journal of Experimental Biology, 208(24), 4709–4714. https://doi.org/10.1242/jeb.01929
  15. Endo, A., Futagawa-Endo, Y., & Dicks, L.M.T. (2009). Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Systematic and Applied Microbiology, 32, 593–600. https://doi.org/10.1016/j.syapm.2009.08.002
  16. Endo, A., & Salminen, S. (2013). Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiology, 36, 444–448. https://doi.org/10.1016/j.syapm.2013.06.002
  17. Engel, P., Martinson, V. G., & Moran, N. A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences, 109(27), 11002–11007. https://doi.org/10.1073/pnas.1202970109
  18. Erban, T., Ledvinka, O., Kamler, M., Hortova, B., Nesvorna, M., Tyl, J., … Hubert, J. (2017). Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood. PeerJ 5:e3816. https://doi.org/10.7717/peerj.3816
  19. Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J., Jiang, H., Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15(5), 645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x
  20. Evans, J. D., & Spivak, M. (2010). Socialized medicine: Individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103(1), 62–72. https://doi.org/10.1016/j.jip.2009.06.019
  21. Eyer, M., Dainat, B., Neumann, P., & Dietemann, V. (2017). Social regulation of ageing by young workers in the honey bee, Apis mellifera. Experimental Gerontology, 87, 84–91. https://doi.org/10.1016/j.exger.2016.11.006
  22. Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., Williams, G. R. (2013). Standard methods for Nosema research. Journal of Apicultural Research, 52(1), 1–28. https://doi.org/10.3896/IBRA.1.52.1.14
  23. Gagoś, M., Czernel, G., Kamiński, D. M., & Kostro, K. (2011). Spectroscopic studies of amphotericin B-Cu2+complexes. BioMetals, 24(5), 915–922. https://doi.org/10.1007/s10534-011-9445-2
  24. Genersch, E., Gisder, S., Hedtke, K., Hunter, W.B., Mökkel, N., Müller, U. (2013). Standard methods for cell cultures in Apis mellifera research. Journal of Apicultural Research, 52, 1–8. https://doi.org/10.3896/IBRA.1.52.1.02
  25. Goblirsch, M. (2017). Using Honey Bee Cell Lines to Improve Honey Bee Health. In Beekeeping-From Science to Practice. (pp. 91–108) Springer.
  26. Goblirsch, M.J., Spivak, M.S., & Kurtti, T.J. (2013). A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues. PLoS One 8, 1–13. https://doi.org/10.1371/journal.pone.0069831
  27. Godfray, H. C. J., Blacquière, T., Field, L. M., Hails, R. S., Petrokofsky, G., Potts, S. G., McLean, A. R. (2015). A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 281, 1–9. https://doi.org/10.1098/rspb.2014.0558
  28. Gorman, M. J., & Paskewitz, S. M. (2001). Serine proteases as mediators of mosquito immune responses. Insect Biochemistry and Molecular Biology, 31(3), 257–262. https://doi.org/10.1016/S0965-1748(00)00145-4
  29. Hamilton, C., Lejeune, B. T., & Rosengaus, R. B. (2010). Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biology Letters, 7(1), 89–92. https://doi.org/10.1098/rsbl.2010.0466
  30. Howis, M., Chorbiński, P., & Nowakowski, P. (2012). Physical damage to the chitin plate and position of Varroa destructor on hive bottoms after use of different varroacidal treatments. Medycyna Weterynaryjna, 68(10), 607–611.
  31. Hunter, W.B. (2010). Medium for development of bee cell cultures (Apis mellifera: Hymenoptera: Apidae). In Vitro Cellular & Developmental Biology - Animal. 46(2), 83–86. https://doi.org/10.1007/s11626-009-9246-x
  32. Imdorf, A., Charrière, J. D., Kilchenmann, V., Bogdanov, S., Fluri, P. (2003). Alternative strategy in central Europe for the control of Varroa destructor in honey bee colonies. Apiacta, 38, 258–285. Retrieved from https://www.apimondia.com/apiacta/articles/2003/imdorf_2.pdf
  33. Johnson, R. M., Dahlgren, L., Siegfried, B. D., & Ellis, M. D. (2013). Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0054092
  34. Jones, J. C., Helliwell, P., Beekman, M., Maleszka, R., Oldroyd, B. P. (2005). The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(12), 1121–1129. https://doi.org/10.1007/s00359-005-0035-z
  35. Jones, J. C., Fruciano, C., Hildebrand, F., Al Toufalilia, H., Balfour, N. J., Bork, P., ... Hughes, W. O. (2018). Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 8(1):441–451. https://doi.org/10.1002/ece3.3597
  36. Keller, L., & Jemielity, S. (2006). Social insects as a model to study the molecular basis of ageing. Experimental Gerontology, 41(6), 553–556. https://doi.org/10.1016/j.exger.2006.04.00
  37. Kucharski, R., Mitri, C., Grau, Y., & Maleszka, R. (2007). Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): Implications for memory formation. Invertebrate Neuroscience, 7(2), 99–108. https://doi.org/10.1007/s10158-007-0045-3
  38. Lockett, G. A., Helliwell, P., & Maleszka, R. (2010). Involvement of DNA methylation in memory processing in the honey bee. NeuroReport, 21(12), 812–816. https://doi.org/10.1097/WNR.0b013e32833ce5be
  39. Lockett, G. A., Wilkes, F., & Maleszka, R. (2010). Brain plasticity, memory and neurological disorders: an epigenetic perspective. NeuroReport, 21(14), 909–913. https://doi.org/10.1097/WNR.0b013e32833e9288
  40. Lynn, D.E. (2002). Methods for maintaining insect cell cultures. Journal of Insect Science, 2, 1–6.
  41. McFrederick, Q. S., Wcislo, W. T., Taylor, D. R., Heather, I. D., Dowds, S. E., Muller, U. G. (2012). Environment or kin : whence do bees obtain acidophilic bacteria? Molecular Ecology, 21, 1754–1768. https://doi.org/10.1111/j.1365-294X.2012.05496.x
  42. Medrzycki, P., Giffard, H., Aupinel, P., Belzunces, L. P., Chauzat, M.-P., Claßen, C., Vidau, C. (2013). Standard methods for toxicology research in Apis mellifera. Journal of Apicultural Research, 52(4), 1–60. https://doi.org/10.3896/IBRA.1.52.4.14
  43. Mello, M. O., & Silva-Filho, M. C. (2002). Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Brazilian Journal of Plant Physiology, 14(2), 71–81. https://doi.org/10.1590/S1677-04202002000200001
  44. Menzel, R., & Giurfa, M. (2001). Cognitive architecture of a mini-brain: the honeybee. Trends in Cognitive Sciences, 5(2), 62–71.
  45. Münch, D., Amdam, G. V., & Wolschin, F. (2008). Ageing in a eusocial insect: Molecular and physiological characteristics of life span plasticity in the honey bee. Functional Ecology, 22(3), 407–421. https://doi.org/10.1111/j.1365-2435.2008.01419.x
  46. Paleolog, J., Strachecka, A. J., Burzyński, S. R., Olszewski, K., Borsuk, G. (2011). The larval diet supplemented with the low-molecular epigenetic switch sodium phenylacetylglutaminate influences the worker cuticle proteolytic system in Apis mellifera L. Journal of Apiculural Science, 55(2), 67–77.
  47. Pettis, J. S., Van Engelsdorp, D., Johnson, J., & Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 153–158. https://doi.org/10.1007/s00114-011-0881-1
  48. Powell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera. Applied and Environmental Microbiology, 80(23), 7378–7387. https://doi.org/10.1128/aem.01861-14
  49. Ptaszyńska, A. A., Trytek, M., Borsuk, G., Buczek, K., Rybicka-Jasińska, K., Gryko, D. (2018). Porphyrins inactivate Nosema spp. microsporidia. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-23678-8
  50. Rangberg, A., Mathiesen, G., Amdam, G. V., & Diep, D.B. (2015). The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera. Beneficial Microbes, 6(4), 513–523. https://doi.org/10.3920/BM2014.0115
  51. Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, 96–119. https://doi.org/10.1016/j.jip.2009.07.016
  52. Si, A., Zhang, S. W., & Maleszka, R. (2005). Effects of caffeine on olfactory and visual learning in the honey bee (Apis mellifera). Pharmacology Biochemistry and Behavior, 82(4), 664–672. https://doi.org/10.1016/j.pbb.2005.11.009
  53. Stasiak, P., & Sznitowska, M. (2010). Zastosowanie hodowli komórkowych w badaniach biofarmaceutycznych. Farm Pol 66, 228–234.
  54. Stokłosowa, S. (2004). Hodowla komórek i tkanek. Wydawnictwo Naukowe PWN, Warszawa.
  55. Strachecka, A. J., Gryzińska, M. M., & Krauze, M. (2010). Influence of environmental pollution on the protective proteolytic barrier of the honey bee Apis mellifera mellifera. Polish Journal of Environmental Studies, 19(4), 855–859.
  56. Strachecka, A. J., Paleolog, J., Borsuk, G., Olszewski, K., Bajda, M. (2012a). Metylowanie DNA u pszczoły miodnej (Apis mellifera) i jego wpływ na badania biologiczne. Medycyna Weterynaryjna, 68(7), 392.
  57. Strachecka, A. J., Paleolog, J., Olszewski, K., & Borsuk, G. (2012b). Influence of amitraz and oxalic acid on the cuticle proteolytic system of Apis mellifera L. workers. Insects, 3(3), 821–832. https://doi.org/10.3390/insects3030821
  58. Strachecka, A. J., Paleolog, J., Borsuk, G., & Olszewski, K. (2012c). The influence of formic acid on the body surface proteolytic system at different developmental stages in Apis mellifera L. workers. Journal of Apicultural Research, 51(3), 252–262. https://doi.org/10.3896/IBRA.1.51.3.06
  59. Strachecka, A. J., Borsuk, G., Olszewski, K., Paleolog, J., Gagoś, M., Chobotow, J., Bajda, M. (2012d). The effect of amphotericin B on the lifespan, body-surface protein concentrations, and DNA methylation levels of honey bees (Apis mellifera). Journal of Apicultural Science, 56(2), 107–113. https://doi.org/10.2478/v10289-012-0028-4
  60. Strachecka, A. J., Sawicki, M., Borsuk, G., Olszewski, K., Paleolog, J., Bajda, M., Chobotow, J. (2013). Akarycydy jako sposób walki z roztoczami Varroa destructor w rodzinach pszczelich - skuteczność i zagrożenia. Medycyna Weterynaryjna, 69(4), 219–224.
  61. Strachecka, A. J., Krauze, M., Olszewski, K., Borsuk, G., Paleolog, J., Merska, M., Grzywnowicz, K. (2014). Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Moscow), 79(11), 1192–1201. https://doi.org/10.1134/S0006297914110066
  62. Strachecka, A. J., Olszewski, K., & Paleolog, J. (2015). Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. Journal of Apicultural Science, 59(1), 129–141. https://doi.org/10.1515/jas-2015-0014
  63. Strachecka, A. J., Łoś, A., Filipczuk, J., & Schulz M. (2018). Indywidualne i społeczne mechanizmy odporności. Medycyna Weterynaryjna, 74(7), 426–433. DOI: dx.doi.org/10.21521/mw.6013
  64. Suchail, S., Guez, D., & Belzunces, L. P. (2001). Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry, 20(11), 2482–2486. https://doi.org/10.1002/etc.5620201113
  65. Szymaś, B., & Przybyl, A. (2007). Midgut Histological Picture of the Honey Bee (Apis Mellifera L.) Following Consumption of Substitute Feeds Supplemented With Feed Additives. Nauka Przyroda Technologie, 1(4), 48.
  66. Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., Pedraza-Chaverrí, J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology, 1(1), 448–456. https://doi.org/10.1016/j.redox.2013.09.003
  67. Vojvodic, S., Rehan, S. M., & Anderson, K. E. (2013). Microbial Gut Diversity of Africanized and European Honey Bee Larval Instars. PLoS ONE 8(8): e72106. doi: 10.1371/journal.pone.0072106
  68. Woodcock, B. A., Isaac, N. J. B., Bullock, J. M., Roy, D. B., Garthwaite, D. G., Crowe, A., Pywell, R. F. (2016). Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 7, 1–8. https://doi.org/10.1038/ncomms12459
  69. Yan, H., Bonasio, R., Simola, D. F., Liebig, J., Berger, S. L., Reinberg, D. (2015). DNA Methylation in Social Insects: How Epigenetics Can Control Behavior and Longevity. Annual Review of Entomology, 60(1), 435–452. https://doi.org/10.1146/annurevento-010814-020803
DOI: https://doi.org/10.2478/jas-2020-0002 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 5 - 13
Submitted on: Jun 13, 2019
Accepted on: Sep 18, 2019
Published on: Jul 2, 2020
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Piotr Dziechciarz, Grzegorz Borsuk, Krzysztof Olszewski, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.