Have a personal or library account? Click to login
Prospects and Validity of Laboratory Cage Tests Conducted in Honeybee Research Part Two: New Possibilities for Use of Laboratory Cage Tests in Response to Challenges Revealed at the Turn of the 20th and 21st Centuries
Agarwal, M., Guzmán, M., Morales-Matos, C., Del Valle Díaz, R. A., Abramson, C. I., Giray, T. (2011). Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS ONE, 6(9), 1–9. https://doi.org/10.1371/journal.pone.0025371
Bąk, B., Wilde, J., & Siuda, M. (2010). Lekooporność roztoczy Varroa destructor na akarycydy w pasiekach północno-wschodniej Polski. In XLVII Naukowa Konferencja Pszczelarska (pp. 75–76). Puławy - Poland
Biergans, S. D., Jones, J. C., Treiber, N., Galizia, C. G., Szyszka, P. (2012). DNA methylation mediates the discriminatory power of associative long-term memory in honeybees. PLoS ONE, 7(6), 1–7. https://doi.org/10.1371/journal.pone.0039349
Blacquière, T., Smagghe, G., Van Gestel, C. A. M., & Mommaerts, V. (2012). Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology, 21(4), 973–992. https://doi.org/10.1007/s10646-012-0863-x
Borsuk, G., Paleolog, J., Olszewski, K., & Strachecka, A. J. (2013). Laboratory assessment of the effect of nanosilver on longevity, sugar syrup ingestion, and infection of honeybees with Nosema spp. Medycyna Weterynaryjna, 69(12), 730–732.
Borsuk, G., Kozłowska, M., Anusiewicz, M., & Paleolog, J. (2018). Nosema ceranae changes semen characteristics and damages sperm DNA in honeybee drones. Invertebrate Survival Journal, 15, 197–202.
Corona, M., Velarde, R. A., Remolina, S., Moran-Lauter, A., Wang, Y., Hughes, K. A., Robinson, G. E. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proceedings of the National Academy of Sciences, 104(17), 7128–7133. https://doi.org/10.1073/pnas.0701909104
Costa, C., Lodesani, M., & Maistrello, L. (2010). Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie, 41(2), 141–150. https://doi.org/10.1051/apido/2009070
Cremer, S., & Sixt, M. (2009). Analogies in the evolution of individual and social immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1513), 129–142. https://doi.org/10.1098/rstb.2008.0166
Decourtye, A., Lacassie, E., & Pham-Delègue, M. (2003). Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Management Science, 59(3), 269–278. https://doi.org/10.1002/ps.631
Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delègue, M. (2004). Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicology and Environmental Safety, 57(3), 410–419. https://doi.org/10.1016/j.ecoenv.2003.08.001
Dyer, A. G. (2005). Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. Journal of Experimental Biology, 208(24), 4709–4714. https://doi.org/10.1242/jeb.01929
Endo, A., & Salminen, S. (2013). Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiology, 36, 444–448. https://doi.org/10.1016/j.syapm.2013.06.002
Engel, P., Martinson, V. G., & Moran, N. A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences, 109(27), 11002–11007. https://doi.org/10.1073/pnas.1202970109
Erban, T., Ledvinka, O., Kamler, M., Hortova, B., Nesvorna, M., Tyl, J., … Hubert, J. (2017). Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood. PeerJ 5:e3816. https://doi.org/10.7717/peerj.3816
Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J., Jiang, H., Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15(5), 645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x
Evans, J. D., & Spivak, M. (2010). Socialized medicine: Individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103(1), 62–72. https://doi.org/10.1016/j.jip.2009.06.019
Eyer, M., Dainat, B., Neumann, P., & Dietemann, V. (2017). Social regulation of ageing by young workers in the honey bee, Apis mellifera. Experimental Gerontology, 87, 84–91. https://doi.org/10.1016/j.exger.2016.11.006
Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., Williams, G. R. (2013). Standard methods for Nosema research. Journal of Apicultural Research, 52(1), 1–28. https://doi.org/10.3896/IBRA.1.52.1.14
Gagoś, M., Czernel, G., Kamiński, D. M., & Kostro, K. (2011). Spectroscopic studies of amphotericin B-Cu2+complexes. BioMetals, 24(5), 915–922. https://doi.org/10.1007/s10534-011-9445-2
Genersch, E., Gisder, S., Hedtke, K., Hunter, W.B., Mökkel, N., Müller, U. (2013). Standard methods for cell cultures in Apis mellifera research. Journal of Apicultural Research, 52, 1–8. https://doi.org/10.3896/IBRA.1.52.1.02
Goblirsch, M.J., Spivak, M.S., & Kurtti, T.J. (2013). A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues. PLoS One 8, 1–13. https://doi.org/10.1371/journal.pone.0069831
Godfray, H. C. J., Blacquière, T., Field, L. M., Hails, R. S., Petrokofsky, G., Potts, S. G., McLean, A. R. (2015). A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 281, 1–9. https://doi.org/10.1098/rspb.2014.0558
Gorman, M. J., & Paskewitz, S. M. (2001). Serine proteases as mediators of mosquito immune responses. Insect Biochemistry and Molecular Biology, 31(3), 257–262. https://doi.org/10.1016/S0965-1748(00)00145-4
Hamilton, C., Lejeune, B. T., & Rosengaus, R. B. (2010). Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biology Letters, 7(1), 89–92. https://doi.org/10.1098/rsbl.2010.0466
Howis, M., Chorbiński, P., & Nowakowski, P. (2012). Physical damage to the chitin plate and position of Varroa destructor on hive bottoms after use of different varroacidal treatments. Medycyna Weterynaryjna, 68(10), 607–611.
Hunter, W.B. (2010). Medium for development of bee cell cultures (Apis mellifera: Hymenoptera: Apidae). In Vitro Cellular & Developmental Biology - Animal. 46(2), 83–86. https://doi.org/10.1007/s11626-009-9246-x
Imdorf, A., Charrière, J. D., Kilchenmann, V., Bogdanov, S., Fluri, P. (2003). Alternative strategy in central Europe for the control of Varroa destructor in honey bee colonies. Apiacta, 38, 258–285. Retrieved from https://www.apimondia.com/apiacta/articles/2003/imdorf_2.pdf
Johnson, R. M., Dahlgren, L., Siegfried, B. D., & Ellis, M. D. (2013). Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0054092
Jones, J. C., Helliwell, P., Beekman, M., Maleszka, R., Oldroyd, B. P. (2005). The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(12), 1121–1129. https://doi.org/10.1007/s00359-005-0035-z
Jones, J. C., Fruciano, C., Hildebrand, F., Al Toufalilia, H., Balfour, N. J., Bork, P., ... Hughes, W. O. (2018). Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 8(1):441–451. https://doi.org/10.1002/ece3.3597
Keller, L., & Jemielity, S. (2006). Social insects as a model to study the molecular basis of ageing. Experimental Gerontology, 41(6), 553–556. https://doi.org/10.1016/j.exger.2006.04.00
Kucharski, R., Mitri, C., Grau, Y., & Maleszka, R. (2007). Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): Implications for memory formation. Invertebrate Neuroscience, 7(2), 99–108. https://doi.org/10.1007/s10158-007-0045-3
Lockett, G. A., Helliwell, P., & Maleszka, R. (2010). Involvement of DNA methylation in memory processing in the honey bee. NeuroReport, 21(12), 812–816. https://doi.org/10.1097/WNR.0b013e32833ce5be
Lockett, G. A., Wilkes, F., & Maleszka, R. (2010). Brain plasticity, memory and neurological disorders: an epigenetic perspective. NeuroReport, 21(14), 909–913. https://doi.org/10.1097/WNR.0b013e32833e9288
McFrederick, Q. S., Wcislo, W. T., Taylor, D. R., Heather, I. D., Dowds, S. E., Muller, U. G. (2012). Environment or kin : whence do bees obtain acidophilic bacteria? Molecular Ecology, 21, 1754–1768. https://doi.org/10.1111/j.1365-294X.2012.05496.x
Medrzycki, P., Giffard, H., Aupinel, P., Belzunces, L. P., Chauzat, M.-P., Claßen, C., Vidau, C. (2013). Standard methods for toxicology research in Apis mellifera. Journal of Apicultural Research, 52(4), 1–60. https://doi.org/10.3896/IBRA.1.52.4.14
Mello, M. O., & Silva-Filho, M. C. (2002). Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Brazilian Journal of Plant Physiology, 14(2), 71–81. https://doi.org/10.1590/S1677-04202002000200001
Münch, D., Amdam, G. V., & Wolschin, F. (2008). Ageing in a eusocial insect: Molecular and physiological characteristics of life span plasticity in the honey bee. Functional Ecology, 22(3), 407–421. https://doi.org/10.1111/j.1365-2435.2008.01419.x
Paleolog, J., Strachecka, A. J., Burzyński, S. R., Olszewski, K., Borsuk, G. (2011). The larval diet supplemented with the low-molecular epigenetic switch sodium phenylacetylglutaminate influences the worker cuticle proteolytic system in Apis mellifera L. Journal of Apiculural Science, 55(2), 67–77.
Pettis, J. S., Van Engelsdorp, D., Johnson, J., & Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 153–158. https://doi.org/10.1007/s00114-011-0881-1
Powell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera. Applied and Environmental Microbiology, 80(23), 7378–7387. https://doi.org/10.1128/aem.01861-14
Ptaszyńska, A. A., Trytek, M., Borsuk, G., Buczek, K., Rybicka-Jasińska, K., Gryko, D. (2018). Porphyrins inactivate Nosema spp. microsporidia. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-23678-8
Rangberg, A., Mathiesen, G., Amdam, G. V., & Diep, D.B. (2015). The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera. Beneficial Microbes, 6(4), 513–523. https://doi.org/10.3920/BM2014.0115
Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, 96–119. https://doi.org/10.1016/j.jip.2009.07.016
Si, A., Zhang, S. W., & Maleszka, R. (2005). Effects of caffeine on olfactory and visual learning in the honey bee (Apis mellifera). Pharmacology Biochemistry and Behavior, 82(4), 664–672. https://doi.org/10.1016/j.pbb.2005.11.009
Strachecka, A. J., Gryzińska, M. M., & Krauze, M. (2010). Influence of environmental pollution on the protective proteolytic barrier of the honey bee Apis mellifera mellifera. Polish Journal of Environmental Studies, 19(4), 855–859.
Strachecka, A. J., Paleolog, J., Borsuk, G., Olszewski, K., Bajda, M. (2012a). Metylowanie DNA u pszczoły miodnej (Apis mellifera) i jego wpływ na badania biologiczne. Medycyna Weterynaryjna, 68(7), 392.
Strachecka, A. J., Paleolog, J., Olszewski, K., & Borsuk, G. (2012b). Influence of amitraz and oxalic acid on the cuticle proteolytic system of Apis mellifera L. workers. Insects, 3(3), 821–832. https://doi.org/10.3390/insects3030821
Strachecka, A. J., Paleolog, J., Borsuk, G., & Olszewski, K. (2012c). The influence of formic acid on the body surface proteolytic system at different developmental stages in Apis mellifera L. workers. Journal of Apicultural Research, 51(3), 252–262. https://doi.org/10.3896/IBRA.1.51.3.06
Strachecka, A. J., Borsuk, G., Olszewski, K., Paleolog, J., Gagoś, M., Chobotow, J., Bajda, M. (2012d). The effect of amphotericin B on the lifespan, body-surface protein concentrations, and DNA methylation levels of honey bees (Apis mellifera). Journal of Apicultural Science, 56(2), 107–113. https://doi.org/10.2478/v10289-012-0028-4
Strachecka, A. J., Sawicki, M., Borsuk, G., Olszewski, K., Paleolog, J., Bajda, M., Chobotow, J. (2013). Akarycydy jako sposób walki z roztoczami Varroa destructor w rodzinach pszczelich - skuteczność i zagrożenia. Medycyna Weterynaryjna, 69(4), 219–224.
Strachecka, A. J., Krauze, M., Olszewski, K., Borsuk, G., Paleolog, J., Merska, M., Grzywnowicz, K. (2014). Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Moscow), 79(11), 1192–1201. https://doi.org/10.1134/S0006297914110066
Strachecka, A. J., Olszewski, K., & Paleolog, J. (2015). Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. Journal of Apicultural Science, 59(1), 129–141. https://doi.org/10.1515/jas-2015-0014
Suchail, S., Guez, D., & Belzunces, L. P. (2001). Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry, 20(11), 2482–2486. https://doi.org/10.1002/etc.5620201113
Szymaś, B., & Przybyl, A. (2007). Midgut Histological Picture of the Honey Bee (Apis Mellifera L.) Following Consumption of Substitute Feeds Supplemented With Feed Additives. Nauka Przyroda Technologie, 1(4), 48.
Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., Pedraza-Chaverrí, J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology, 1(1), 448–456. https://doi.org/10.1016/j.redox.2013.09.003
Vojvodic, S., Rehan, S. M., & Anderson, K. E. (2013). Microbial Gut Diversity of Africanized and European Honey Bee Larval Instars. PLoS ONE 8(8): e72106. doi: 10.1371/journal.pone.0072106
Woodcock, B. A., Isaac, N. J. B., Bullock, J. M., Roy, D. B., Garthwaite, D. G., Crowe, A., Pywell, R. F. (2016). Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 7, 1–8. https://doi.org/10.1038/ncomms12459
Yan, H., Bonasio, R., Simola, D. F., Liebig, J., Berger, S. L., Reinberg, D. (2015). DNA Methylation in Social Insects: How Epigenetics Can Control Behavior and Longevity. Annual Review of Entomology, 60(1), 435–452. https://doi.org/10.1146/annurevento-010814-020803