Have a personal or library account? Click to login
Bayesian estimation and regularization techniques in categorical data analysis Cover

Bayesian estimation and regularization techniques in categorical data analysis

By: J. Kalina  
Open Access
|Dec 2025

References

  1. Agresti, A. 2002. Categorical Data Analysis, 2nd ed. Wiley, Hoboken.
  2. Baek, J. and Park, J. 2023. Mixture of networks for clustering categorical data: A penalized composite likelihood approach. American Statistician 77, 259–273.
  3. Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53, 370–418.
  4. Braun, F., Caelen, O., Smirnov, E., Kelk, S., and Lebichot, B. 2017. Improving card fraud detection through suspicious pattern discovery. In Lecture Notes in Computer Science. Vol. 10351. Springer, Cham, 181–190.
  5. de Toledo, P., Núñez, F., and Usabiaga, C. 2020. Matching in segmented labor markets: An analytical proposal based on high-dimensional contingency tables. Economic Modelling 93, 175–186.
  6. Deng, J. and Deng, Y. 2022. Maximum entropy of random permutation set. Soft Computing 26, 11265–11275.
  7. Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D. 2013. Bayesian Data Analysis, 3rd ed. Chapman and Hall/CRC, Boca Raton.
  8. Golden, R. 2020. Statistical Machine Learning: A Unified Framework. Chapman & Hall/CRC Press, Boca Raton.
  9. Gupta, R., Gupta, S., Singh, J., and Kais, S. 2025. Entropy-assisted quality pattern identification in finance. Entropy 27, 4, 430.
  10. Hausser, J. and Strimmer, K. 2013. Entropy inference and the james-stein estimator with application to nonlinear gene association networks. Journal of Machine Learning Research 10, 1469–1484.
  11. Issouani, E., Bertail, P., and Gautherat, E. 2024. Exponential bounds for regularized hotelling’s t2 statistic in high dimension. Journal of Multivariate Analysis 203, 105342.
  12. Jaynes, E. 2003. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge.
  13. Johnson, A., Ott, M., and Dogucu, M. 2022. Bayes Rules! An Introduction to Applied Bayesian Modeling. CRC Press, Boca Raton.
  14. Kalina, J. and Matonoha, C. 2020. A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images. Biocybernetics and Biomedical Engineering 40, 2, 774–786.
  15. Kalina, J. and Rensová, D. 2015. How to reduce dimensionality of data: Robustness point of view. Serbian Journal of Management 10, 131–140.
  16. Kalina, J. and Schlenker, A. 2015. A robust supervised variable selection for noisy high-dimensional data. BioMed Research International 2015, 320385.
  17. Kalina, J. and Tichavský, J. 2022. The minimum weighted covariance determinant estimator for high-dimensional data. Advances in Data Analysis and Classification 16, 977–999.
  18. Ledoit, O. and Wolf, M. 2022. The power of (non-)linear shrinking: A review and guide to covariance matrix estimation. Journal of Financial Econometrics 20, 187–218.
  19. Lindskou, M., Eriksen, P., and Tvedebrink, T. 2020. Outlier detection in contingency tables using decomposable graphical models. Scandinavian Journal of Statistics 47, 347–360.
  20. Loftus, S. 2024. An Introductory Handbook of Bayesian Thinking. Elsevier, London. Ming, H. and Yang, H. 2024. l0 regularized logistic regression for large-scale data. Pattern Recognition 146, 110024.
  21. Pose, F., Bautista, L., Gianmuso, F., and Redelico, F. 2021. On the permutation entropy bayesian estimation. Communications in Nonlinear Science and Numerical Simulation 99, 105779.
  22. Rao, C. 2002. Linear Statistical Inference and Its Applications. Wiley, New York.
  23. Smith, M. and Ruxton, G. 2020. Effective use of the mcnemar test. Behavioral Ecology and Sociobiology 74, 133.
  24. Sohaee, N. 2023. Error and optimism bias regularization. Journal of Big Data 10, 8.
  25. Subramanian, I., Verma, S., Kumar, S., Jere, A., and Anamika, K. 2020. Multi-omics data integration, interpretation, and its application. Bioinformatics and Biology Insights 2020, 14.
  26. Tuyl, F., Gerlach, R., and Mengersen, K. 2008. A comparison of bayes-laplace, jeffreys, and other priors: The case of zero events. American Statistician 62, 40–44.
  27. Wang, A., Henao, R., and Carin, L. 2024. Transformer in-context learning for categorical data. arXiv:2405.17248.
  28. Wang, K., Li, J., and Tsung, F. 2023. Efficient and interpretable monitoring of high-dimensional categorical processes. IISE Transactions 55, 886–900.
  29. Wang, R. and Li, J. 2023. Block-regularized 5×2 cross-validated mcnemar’s test for comparing two classification algorithms. Submitted.
  30. Zhang, Y., Zaidi, N., Zhou, J., Wang, T., and Li, G. 2024. Effective interpretable learning for large-scale categorical data. Data Mining and Knowledge Discovery 38, 2223–2251.
  31. Zhou, X., Heng, Q., Chi, E. C., and Zhou, H. 2024. Proximal mcmc for bayesian inference of constrained and regularized estimation. The American Statistician 78, 4, 379–390.
DOI: https://doi.org/10.2478/jamsi-2025-0011 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 105 - 122
Published on: Dec 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 J. Kalina, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.