References
- A
gresti , A. 2002. Categorical Data Analysis, 2nd ed. Wiley, Hoboken. - B
aek , J.and Park , J. 2023. Mixture of networks for clustering categorical data: A penalized composite likelihood approach. American Statistician 77, 259–273. - B
ayes , T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53, 370–418. - B
raun , F., Caelen , O., Smirnov , E., Kelk , S.,and Lebichot , B. 2017. Improving card fraud detection through suspicious pattern discovery. In Lecture Notes in Computer Science. Vol. 10351. Springer, Cham, 181–190. de Toledo , P., Núñez , F.,and Usabiaga , C. 2020. Matching in segmented labor markets: An analytical proposal based on high-dimensional contingency tables. Economic Modelling 93, 175–186.- D
eng , J.and Deng , Y. 2022. Maximum entropy of random permutation set. Soft Computing 26, 11265–11275. - G
elman , A., Carlin , J., Stern , H., Dunson , D., Vehtari , A.,and Rubin , D. 2013. Bayesian Data Analysis, 3rd ed. Chapman and Hall/CRC, Boca Raton. - G
olden , R. 2020. Statistical Machine Learning: A Unified Framework. Chapman & Hall/CRC Press, Boca Raton. - G
upta , R., Gupta , S., Singh , J.,and Kais , S. 2025. Entropy-assisted quality pattern identification in finance. Entropy 27, 4, 430. - H
ausser , J.and Strimmer , K. 2013. Entropy inference and the james-stein estimator with application to nonlinear gene association networks. Journal of Machine Learning Research 10, 1469–1484. - I
ssouani , E., Bertail , P.,and Gautherat , E. 2024. Exponential bounds for regularized hotelling’s t2 statistic in high dimension. Journal of Multivariate Analysis 203, 105342. - J
aynes , E. 2003. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge. - J
ohnson , A., Ott , M.,and Dogucu , M. 2022. Bayes Rules! An Introduction to Applied Bayesian Modeling. CRC Press, Boca Raton. - K
alina , J.and Matonoha , C. 2020. A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images. Biocybernetics and Biomedical Engineering 40, 2, 774–786. - K
alina , J.and Rensová , D. 2015. How to reduce dimensionality of data: Robustness point of view. Serbian Journal of Management 10, 131–140. - K
alina , J.and Schlenker , A. 2015. A robust supervised variable selection for noisy high-dimensional data. BioMed Research International 2015, 320385. - K
alina , J.and Tichavský , J. 2022. The minimum weighted covariance determinant estimator for high-dimensional data. Advances in Data Analysis and Classification 16, 977–999. - L
edoit , O.and Wolf , M. 2022. The power of (non-)linear shrinking: A review and guide to covariance matrix estimation. Journal of Financial Econometrics 20, 187–218. - L
indskou , M., Eriksen , P.,and Tvedebrink , T. 2020. Outlier detection in contingency tables using decomposable graphical models. Scandinavian Journal of Statistics 47, 347–360. - L
oftus , S. 2024. An Introductory Handbook of Bayesian Thinking. Elsevier, London. Ming , H.and Yang , H. 2024. l0 regularized logistic regression for large-scale data. Pattern Recognition 146, 110024. - P
ose , F., Bautista , L., Gianmuso , F.,and Redelico , F. 2021. On the permutation entropy bayesian estimation. Communications in Nonlinear Science and Numerical Simulation 99, 105779. - R
ao , C. 2002. Linear Statistical Inference and Its Applications. Wiley, New York. - S
mith , M.and Ruxton , G. 2020. Effective use of the mcnemar test. Behavioral Ecology and Sociobiology 74, 133. - S
ohaee , N. 2023. Error and optimism bias regularization. Journal of Big Data 10, 8. - S
ubramanian , I., Verma , S., Kumar , S., Jere , A.,and Anamika , K. 2020. Multi-omics data integration, interpretation, and its application. Bioinformatics and Biology Insights 2020, 14. - T
uyl , F., Gerlach , R.,and Mengersen , K. 2008. A comparison of bayes-laplace, jeffreys, and other priors: The case of zero events. American Statistician 62, 40–44. - W
ang , A., Henao , R.,and Carin , L. 2024. Transformer in-context learning for categorical data. arXiv:2405.17248. - W
ang , K., Li , J.,and Tsung , F. 2023. Efficient and interpretable monitoring of high-dimensional categorical processes. IISE Transactions 55, 886–900. - W
ang , R.and Li , J. 2023. Block-regularized 5×2 cross-validated mcnemar’s test for comparing two classification algorithms. Submitted. - Z
hang , Y., Zaidi , N., Zhou , J., Wang , T.,and Li , G. 2024. Effective interpretable learning for large-scale categorical data. Data Mining and Knowledge Discovery 38, 2223–2251. - Z
hou , X., Heng , Q., Chi , E. C.,and Zhou , H. 2024. Proximal mcmc for bayesian inference of constrained and regularized estimation. The American Statistician 78, 4, 379–390.