Have a personal or library account? Click to login
Some results on deferred statistical convergence of double sequences in neutrosophic normed linear spaces Cover

Some results on deferred statistical convergence of double sequences in neutrosophic normed linear spaces

By: P. Jenifer,  M. Jeyaraman and  H. Aydi  
Open Access
|Dec 2025

References

  1. R. P. Agnew, On deferred Cesaro mean, Comm. Ann. Math., 33(1932), 413-421. https://doi.org/10.2307/1968524.
  2. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set Syst., 20(1986), 87-96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3.
  3. H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244.
  4. C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(2) (1992), pp. 239-248. https://doi.org/10.1016/0165-0114(92)90338-5.
  5. B. Hazarika, and A. Esi, On asymptotically Wijsman lacunary statistical convergence of set sequences in ideal context, Filomat, 31(9)(2017), 2691-2703. https://www.jstor.org/stable/26195002.
  6. M. Jeyaraman, P. Jenifer, Statistical ∆m convergence in neutrosophic normed spaces, Journal of Computational Mathematica 7(1), (2023), 46-60. https://doi.org/10.26524/cm162.
  7. M. Jeyaraman, P. Jenifer, U. Praveena, New Approach in Logarithmic Summability of Sequences in Neutrosophic Normed Spaces, International Journal of Neutrosophic Science (IJNS), 19(3), (2022), 29-39. https://doi.org/10.54216/IJNS.190303.
  8. M. Jeyaraman, A. Ramachandran and V. B. Shakila, Fixed Point Theorems for Week Contractions On Neutrosophic Normed Spaces, Journal of Computation Mathematica, 6(1) (2022), 134-158. https://doi.org/10.26524/cm127.
  9. S. Karakus, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35(2008),763-769. https://doi.org/10.1016/j.chaos.2006.05.046.
  10. M. Kiris¸ci, and N. S¸ims¸ek, Neutrosophic normed space and statistical convergence, J. Anal., 28(4) (2020), pp. 1059-1073. https://doi.org/10.1007/s41478-020-00234-0.
  11. M. Kucukaslan, M. Yilmazturk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56(2016), 357-366. http://dx.doi.org/10.5666/KMJ.2016.56.2.357.
  12. Lj. D. R. Kocinac, M. H. M. Rashid, On ideal convergence of double sequences in the topology induced by a fuzzy 2-norm, TWMS J. Pure Appl. Math., 8(1)(2017), 97-111.
  13. S. Melliani, M. Kucukkaslan, H. Sadiki, Chadli, L. S., Deferred statistical convergence of sequences in intuitionistic fuzzy normed spaces, Notes on Intuitionistic Fuzzy Sets, 24(3)(2018), 64-78. https://doi.org/10.7546/nifs.2018.24.3.64-78.
  14. S. A. Mohiuddine, Q. M. Mohiuddine, D. Lahoni, On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos, Solitons Fractals, 42(2009), 1731-1737. 10.1016/j.chaos.2009.03.086.
  15. M. Mursaleen, S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed spaces, J. Comput. Appl.Math., 233(2009), 142-149. 10.1016/j.cam.2009.07.005.
  16. V. Pazhani, J. Karthika, M. Jeyaraman, Some New Aspects of Fibonacci Lacunary Convergence of Double Sequences in Neutrosophic Normed Spaces, Journal of Algebraic Statistics,13(3), 2022, 1292-1303. https://publishoa.com.
  17. U. Praveena, M. Jeyaraman, On Generalized Cesaro Summability Method In Neutrosophic Normed Spaces Using Two-Sided Taubarian Conditions, Journal of algebraic statistics 13(3), (2022), 1313-1323. https://publishoa.com.
  18. R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fract. 27 (2006), 331-344. https://doi.org/10.1016/j.chaos.2005.03.019.
  19. E. Savas, and M. Gurdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Sci. Asia, 41 (2015), pp. 289-294. 10.2306/scienceasia1513-1874.2015.41.289.
  20. F. Smarandache, Neutrosophy: Neutrosophic Probability, set, and Logic:Analytic Synthesis and Synthesis Analysis, American Research Press,(1998).
  21. F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005), 287-297.
  22. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1951), 73-74.
  23. L. A. Zadeh, Fuzzy sets. Inf. Control. 8 (1965), 338-353. 10.1016/S0019-9958(65)90241-X.
DOI: https://doi.org/10.2478/jamsi-2025-0008 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 33 - 51
Published on: Dec 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 P. Jenifer, M. Jeyaraman, H. Aydi, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.