References
- Bakhtin, I.A. (1989). The contraction mappings principle in almost Metric Spaces. Funct. Anal., 30, 26–27.
- Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundamenta Mathematicae, 3(1), 133–181.
- Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 30, 511.
- Czerwik, S. (1998). Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Dell Universita Modena Reggio Emilia. 46, 263-276.
- Dhawan, P., Gupta, V., Kaur, J. (2022). Existence of coincidence and common fixed points for a sequence of mappings in Quasi partial metric spaces. Journal of Analysis. 30, 405–414.
- Dhawan, P., Kaur, J. (2019). Some common fixed point theorems in ordered partial metric spaces via F-generalized contractive type mappings. Mathematics. 7(2), 193.
- Dhawan, P., Tripti. (2024). Fixed Point Results in Soft b-fuzzy metric spaces. Advances in Fixed Point Theory. 14, 50.
- Edelstein, M. (1962). On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79.
- George, A., Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy sets and Systems. 64, 395–399.
- Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy sets and Systems. 27(3), 385–389.
- Gregori, V., Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. Fuzzy sets and Systems. 125, 245–252.
- Gregori, V., Minana, J. (2014). Some remarks on fuzzy contractive mappings. Fuzzy sets and Systems. 251, 101–103.
- Gupta, V., Dhawan, P., Jindal, J., Verma, M. (2023). Some novel fixed point results for (Ω,∆)-weak contraction condition in complete fuzzy metric spaces. Pesquisa Operacional. 43, 1–20.
- Hussain, N., Salimi, P., Parvaneh, V. (2015). Fixed point results for various contractions in parametric and fuzzy b-metric spaces. J. Nonlinear Sci. Appl.. 8, 719–739.
- Jain, S., Singh, B. (2005). Semi compatibility and fixed point theorems in fuzzy metric space using implicit relation. Int. J. Math. Math. Sci. 2005:16, 2617–2629.
- Kramosil, I., Michalek, J. (1975). Fuzzy metric and statistical metric spaces. Kybernetika. 11, 336–344.
- Mihet, D. (2008). Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy sets and Systems. 159, 739–744.
- Nădăban Sorin (2016). Fuzzy b-Metric Spaces. International Journal of Computers, Communications & Control. 11(2), 273.
- Rakić, D., Mukheimer, A., Došenović, T. (2020). On some new fixed point results in fuzzy b-metric spaces. J. Inequal. Appl. 99.
- Romaguera, S. (2023). Concerning Fuzzy b-Metric Spaces. Mathematics. 11, 4625.
- Schweizer, B., Sklar, A. (1960). Statistical metric spaces. Pacific J. Math. 10(1), 385–389.
- Tirado, P. (2012). Contraction mappings in fuzzy quasi-metric spaces and [0, 1]-fuzzy posets. Fixed Point Theory. 13(1), 273–283.
- Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy sets and Systems. 222, 108–114.
- Wadkar, B.R., Bhardwaj, R. (2017). Coupled Soft Fixed-Point Theorems in Soft Metric and Soft b-Metric Space. Appl. Math. Inform. And Mech. 9, 59–73.
- Zadeh, L.A. (1965). Fuzzy sets. Inf. Control 8, 338-353.