Have a personal or library account? Click to login
Coincidence fixed point results for (Θ,g)b-contraction maps Cover
By: T. Sharma,  P. Dhawan and  P. Chahal  
Open Access
|Dec 2025

References

  1. Bakhtin, I.A. (1989). The contraction mappings principle in almost Metric Spaces. Funct. Anal., 30, 26–27.
  2. Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundamenta Mathematicae, 3(1), 133–181.
  3. Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 30, 511.
  4. Czerwik, S. (1998). Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Dell Universita Modena Reggio Emilia. 46, 263-276.
  5. Dhawan, P., Gupta, V., Kaur, J. (2022). Existence of coincidence and common fixed points for a sequence of mappings in Quasi partial metric spaces. Journal of Analysis. 30, 405–414.
  6. Dhawan, P., Kaur, J. (2019). Some common fixed point theorems in ordered partial metric spaces via F-generalized contractive type mappings. Mathematics. 7(2), 193.
  7. Dhawan, P., Tripti. (2024). Fixed Point Results in Soft b-fuzzy metric spaces. Advances in Fixed Point Theory. 14, 50.
  8. Edelstein, M. (1962). On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79.
  9. George, A., Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy sets and Systems. 64, 395–399.
  10. Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy sets and Systems. 27(3), 385–389.
  11. Gregori, V., Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. Fuzzy sets and Systems. 125, 245–252.
  12. Gregori, V., Minana, J. (2014). Some remarks on fuzzy contractive mappings. Fuzzy sets and Systems. 251, 101–103.
  13. Gupta, V., Dhawan, P., Jindal, J., Verma, M. (2023). Some novel fixed point results for (Ω,∆)-weak contraction condition in complete fuzzy metric spaces. Pesquisa Operacional. 43, 1–20.
  14. Hussain, N., Salimi, P., Parvaneh, V. (2015). Fixed point results for various contractions in parametric and fuzzy b-metric spaces. J. Nonlinear Sci. Appl.. 8, 719–739.
  15. Jain, S., Singh, B. (2005). Semi compatibility and fixed point theorems in fuzzy metric space using implicit relation. Int. J. Math. Math. Sci. 2005:16, 2617–2629.
  16. Kramosil, I., Michalek, J. (1975). Fuzzy metric and statistical metric spaces. Kybernetika. 11, 336–344.
  17. Mihet, D. (2008). Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy sets and Systems. 159, 739–744.
  18. Nădăban Sorin (2016). Fuzzy b-Metric Spaces. International Journal of Computers, Communications & Control. 11(2), 273.
  19. Rakić, D., Mukheimer, A., Došenović, T. (2020). On some new fixed point results in fuzzy b-metric spaces. J. Inequal. Appl. 99.
  20. Romaguera, S. (2023). Concerning Fuzzy b-Metric Spaces. Mathematics. 11, 4625.
  21. Schweizer, B., Sklar, A. (1960). Statistical metric spaces. Pacific J. Math. 10(1), 385–389.
  22. Tirado, P. (2012). Contraction mappings in fuzzy quasi-metric spaces and [0, 1]-fuzzy posets. Fixed Point Theory. 13(1), 273–283.
  23. Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy sets and Systems. 222, 108–114.
  24. Wadkar, B.R., Bhardwaj, R. (2017). Coupled Soft Fixed-Point Theorems in Soft Metric and Soft b-Metric Space. Appl. Math. Inform. And Mech. 9, 59–73.
  25. Zadeh, L.A. (1965). Fuzzy sets. Inf. Control 8, 338-353.
DOI: https://doi.org/10.2478/jamsi-2025-0007 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 21 - 31
Submitted on: Oct 1, 2024
|
Accepted on: Sep 1, 2025
|
Published on: Dec 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 T. Sharma, P. Dhawan, P. Chahal, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.