References
- AKAMATSU, T. (1996). Cyclic Flows, Markov Process and Stochastic Traffic Assignment. Transportation Research Part B: Methodological, 30(5), pp. 369–386.
- ALPEROVICH, T. and SOPASAKIS, A. (2008). Stochastic Description of Traffic Flow. Journal of Statistical Physics, 133(6), pp. 1083–1105.
- BENJAMIN, S. C., JOHNSON, N. F., and HUI, P. M. (1996). Cellular Automata Models of Traffic Flow along a Highway Containing a Junction. Journal of Physics A: Mathematical and General, 29, pp. 3119–3127.
- BHUTTO, I.A., BHUTTO, A.A., KHOKHAR, R.B., SOOMRO, M.A., and SHAIKH, F. (2023). The effect of uniform and exponential streams on Magnetohydrodynamic flows of viscous fluids. VFAST Transactions on Mathematics, 11(1), pp. 121–140.
- BONZANI, I. and MUSSONE, L. (2002). Stochastic Modelling of Traffic Flow. Mathematical and Computer Modelling, 36(1-2), pp. 109–119.
- CALVERT, S., TAALE, H., SNELDER, M., and HOOGENDOORN, S. (2015). Vehicle specific behaviour in macroscopic traffic modelling through stochastic advection invariant. Transportation Research Procedia, 10, pp. 71–81.
- FAN, T., WONG, S. C., ZHANG, Z., and DU, J. (2023). A dynamically bi-orthogonal solution method for a stochastic Lighthill-Whitham-Richards traffic flow model. Computer-Aided Civil and Infrastructure Engineering, 38(11), pp. 1447–1461.
- HO, I. W. H., LEUNG, K. K., and POLAK, J. W. (2010). Stochastic Model and Connectivity Dynamics for VANETs in Signalized Road Systems. IEEE/ACM Transactions on Networking, 19(1), pp. 195–208.
- CHENG, Q., LIN, Y., ZHOU, X. S., and LIU, Z. (2024). Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters. European Journal of Operational Research, 312(1), pp. 182–197.
- CHU, K. C., SAIGAL, R., and SAITOU, K. (2016). Stochastic Lagrangian traffic flow modeling and real-time traffic prediction. IEEE International Conference on Automation Science and Engineering (CASE), pp. 213–218. IEEE.
- JABARI, S., ZHENG, F., LIU, H., and FILIPOVSKA, M. (2018). Stochastic Lagrangian modeling of traffic dynamics. In Proceedings of the 97th Annual Meeting of the Transportation Research Board, pp. 1–14.
- JABARI, S. E. and LIU, H. X. (2012). A stochastic model of traffic flow: Theoretical foundations. Transportation Research Part B: Methodological, 46(1), pp. 156–174.
- JIANG, R. and WU, Q. S. (2002). Cellular Automata Models for Synchronized Traffic Flow. Journal of Physics A: Mathematical and General, 36(2), pp. 381–390.
- KENDZIORRA, A., WAGNER, P., and TOLEDO, T. (2016). A stochastic car following model. Transportation Research Procedia, 15, pp. 198–207.
- KERNER, B. S., KLENOV, S. L., and WOLF, D. E. (2002). Cellular Automata Approach to Three-Phase Traffic Theory. Journal of Physics A: Mathematical and General, 35(47), pp. 9971–0013.
- KHOKHAR, R.B., BHUTTO, A.A., SIDDIQUI, N.F., SHAIKH, F., and BHUTTO, I.A. (2023). Numerical analysis of flow rates, porous media, and Reynolds numbers affecting the combining and separating of Newtonian fluid flows. VFAST Transactions on Mathematics, 11(1), pp. 217–236.
- KNOSPE, W., SANTEN, L., SCHADSCHNEIDER, A., and SCHRECKENBERG, M. (2000). Towards a Realistic Microscopic Description of Highway Traffic. Journal of Physics A: Mathematical and General, 33(48), pp. L477–L485.
- LEE, S., NGODUY, D., and KEYVAN-EKBATANI, M. (2019). Integrated deep learning and stochastic car-following model for traffic dynamics on multi-lane freeways. Transportation Research Part C: Emerging Technologies, 106, pp. 360–377.
- LI, J., CHEN, Q. Y., WANG, H. Z., and NI, D. H. (2012). Analysis of LWR Model with Fundamental Diagram Subject to Uncertainties. Transportmetrica, 8(6), pp. 387–405.
- LIM, S. S., VOS, T., FLAXMAN, A. D., DANAEI, G., SHIBUYA, K., ADAIR-ROHANI, H. and PELIZZARI, P. M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), pp. 2224–2260.
- LIN, S., PAN, T. L., LAM, W. H. K., ZHONG, R. X., and DE SCHUTTER, B. (2018). Stochastic link flow model for signalized traffic networks with uncertainty in demand. IFAC-PapersOnLine, 51(9), pp. 458–463.
- LUO, X., LI, D., and ZHANG, S. (2019). Traffic flow prediction during the holidays based on DFT and SVR. Journal of Sensors, 2019.
- MARTÍNEZ, I. and JIN, W. (2020). Stochastic LWR model with heterogeneous vehicles: Theory and application for autonomous vehicles. Transportation Research Procedia, 47, pp. 155–162.
- NAGEL, K. and SCHRECKENBERG, M. (1992). A Cellular Automaton Model for Freeway Traffic. Journal de Physique I, 2(12), pp. 2221–2229.
- NI, DAIHENG, HSIEH, H. K., and JIANG, T. (2018). Modeling phase diagrams as stochastic processes with application in vehicular traffic flow. Applied Mathematical Modelling, 53, pp. 106–117.
- NISHINARI, K., TREIBER, M., and HELBING, D. (2003). Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics. Physical Review E, 68(6), p. 067101.
- SHAO, H., LAM, W. H., and TAM, M. L. (2006). A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes Under Uncertainty in Demand. Networks and Spatial Economics, 6(3), pp. 173–204.
- SUMALEE, A., ZHONG, R. X., PAN, T. L., and SZETO, W. Y. (2011). Stochastic Cell Transmission Model (SCTM): A Stochastic Dynamic Traffic Model for Traffic State Surveillance and Assignment. Transportation Research Part B: Methodological, 45(3), pp. 507–533.
- TAKAYASU, M. and TAKAYASU, H. (1993). 1/f Noise in a Traffic Model. Fractals, 1(4), pp. 860–866.
- THONHOFER, E. and JAKUBEK, S. (2018). Investigation of Stochastic Variation of Parameters for a Macroscopic Traffic Model. Journal of Intelligent Transportation Systems, 22(6), pp. 547–564.
- TIGHT, M., TIMMS, P., BANISTER, D., BOWMAKER, J., COPAS, J., DAY, A. and WATLING, D. (2011). Visions for a walking and cycling focussed urban transport system. Journal of Transport Geography, 19(6), pp. 1580–1589.
- TREIBER, M. and HELBING, D. (2003). Memory Effects in Microscopic Traffic Models and Wide Scattering in Flow-Density Data. Physical Review E, 68(4), p. 046119.
- TREIBER, M., KESTING, A., and HELBING, D. (2006). Understanding Widely Scattered Traffic Flows, the Capacity Drop, and Platoons as Effects of Variance-Driven Time Gaps. Physical Review E, 74(1), p. 016123.
- WADA, K., MARTÍNEZ, I., and JIN, W. L. (2020). Continuum car-following model of capacity drop at sag and tunnel bottlenecks. Transportation Research Part C: Emerging Technologies, 113, pp. 260–276.
- ZAMITH, M., LEAL-TOLEDO, R. C. P., CLUA, E., TOLEDO, E. M., and DE MAGALHÃES, G. V. (2015). A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction. Journal of Computational Science, 9, pp. 51–56.
- ZHENG, S. T., JIANG, R., JIA, B., TIAN, J., and GAO, Z. (2020). Impact of stochasticity on traffic flow dynamics in macroscopic continuum models. Transportation Research Record, 2674(10), pp. 690–704.
- ZHENG, F., LIU, C., LIU, X., JABARI, S. E., and LU, L. (2020). Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow. Transportation Research Part C: Emerging Technologies, 112, pp. 203–219.
- XU, T. and LAVAL, J. A. (2019). Analysis of a two-regime stochastic car-following model: Explaining capacity drop and oscillation instabilities. Transportation Research Record, 2673(10), pp. 610–619.