Have a personal or library account? Click to login

References

  1. SKIENA, S. 1991. Implementing discrete mathematics: combinatorics and graph theory with Mathematica. Addison-Wesley Longman Publishing Co., Inc.
  2. CRAINE, W. L.1994 Characterizations of fuzzy interval graphs. Fuzzy Sets and Systems, 68(2), 181-193.
  3. Ho, T. Y., Chang, J. M., AND Wang, Y. L. 2000. On the powers of graphs with bounded asteroidal number. Discrete Mathematics, 223(1-3), 125-133.
  4. Todinca, I. 2003. Coloring powers of graphs of bounded clique-width.In Graph-Theoretic Concepts in Computer Science: 29th International Workshop, WG 2003. Elspeet, The Netherlands, June 19-21, 2003. Revised Papers 29, Springer Berlin Heidelberg, 370-382.
  5. CHANG, J. M., HO, C. W., KO, M. T. 2003. Powers of asteroidal triple-free graphs with applications.Ars Combinatoria, 67, 161-174.
  6. AN, X. AND WU, B. 2008. The Wiener index of the kth power of a graph.Applied mathematics letters, 21(5), 436-440.
  7. BONDY, A. AND MURTY, U. S. R. 2008. Graph theory: Graduate texts in mathematics.
  8. GANI, A. N. AND RADHA, K. 2008. On Regular Fuzzy Graphs. Journal of Physical Sciences, 12, 33-40.
  9. ROSENFELD, A. 1975. Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes. Academic press, 77-95.
  10. GANI, A. N. AND AHAMED, M. B. 2003. Order and size in fuzzy graphs. Bulletin of pure and applied sciences, 22(1), 145-148.
  11. PARVATHI, R. AND KARUNAMIGAI, M. G. 2006. Intuitionistic fuzzy graphs. In Computational Intelligence, Theory and Applications: International Conference 9th Fuzzy Days in Dortmund, Germany, Sept. 1820, 2006 Proceedings). Springer Berlin Heidelberg, 139-150.
  12. AKRAM, M. Bipolar fuzzy graphs. Information sciences. 181(24), 5548-5564.
  13. AKRAM, M. AND DUDEK, W. A. 2011. Interval-valued fuzzy graphs. Computers & Mathematics with Applications, 61(2), 289-299.
  14. ZUO, C., PAL, A. AND DEY, A. 2019. New concepts of picture fuzzy graphs with application. Mathematics, 7(5), 470.
  15. AKRAM, M. AND DUDEK, W. A. 2012. Regular bipolar fuzzy graphs. Neural Computing and Applications, 21, 197-205.
  16. BHARATHI, T., SHINY PAULIN, S. AND BIJAN DAVVAZ. A novel discussion on power fuzzy graphs and their application in decision making. Journal of Applied Mathematics & Informatics, 42(1), 123-137
  17. MAHESWARI, N., S. AND SEKAR, C. 2016. On pseudo regular fuzzy graphs. Annals of pure and Applied Mathematics, 11(1), 105-113.
  18. MISHRA, S. N. AND PAL, A. 2017. Regular Interval-Valued Intuitionistic Fuzzy Graphs. Journal of Informatics & Mathematical Sciences, 9(3), 609-621.
  19. CARY, M. 2018. Perfectly regular and perfectly edge-regular fuzzy graphs. Annals of Pure and Applied Mathematics, 16(2), 461-469.
  20. XIAO, W., DEY, A. AND SON, L. H. 2020. A study on regular picture fuzzy graph with applications in communication networks. Journal of Intelligent & Fuzzy Systems, 39(3), 3633-3645.
  21. GHORAI, G. 2021. Characterization of regular bipolar fuzzy graphs. Afrika Matematika, 32(5-6), 1043-1057.
  22. NUSANTARA, T. AND TRISANTI, Y. 2020. Product of complete, strong, null, and regular fuzzy graphs. In AIP Conference Proceedings, 2215(1), AIP Publishing.
DOI: https://doi.org/10.2478/jamsi-2024-0011 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 5 - 18
Published on: Dec 22, 2024
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 T. Bharathi, S. Shiny Paulin, M. Jeba Sherlin, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.