Have a personal or library account? Click to login
A new method to compute the determinantal polynomial coefficients of a matrix (Symmetric Normalized Kirchhoff matrix) of a complete graph Cover

A new method to compute the determinantal polynomial coefficients of a matrix (Symmetric Normalized Kirchhoff matrix) of a complete graph

By: M. Abhishek,  B. Prashanth and  K. Permi  
Open Access
|Dec 2024

References

  1. A. K. Kel’mans, Properties of the Characteristic polynomial of a graph, Kibernetiky na SlȈ u Kommunizmu, Emergija, Markova-Leningrand, 4(1967), 27-41(in Russian).
  2. B. Prashanth, K. Nagendra Naik, K. R Rajanna, A remark on eigen values of Signed graph, Journal of Applied Mathematics, Statistics and Informatics15(1) (2019), 33-42. (ISSN (print): 1336-9180,(ISSN (on-line): 1339-0015, Poland)).
  3. C. S. Oliveria, N. M. M. de Abreu, S. Jurkiewicz, The Characteristic polynomial of the Laplacian of graphs in(a,b)-linear classes, Linear Algebra and its Applications 356, 113-121 (2002), (ISSN:0024-3795).
  4. D. Cvetkovic, P. Rowlinson, S. Simi’c: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge(2010).
  5. F. Harary, R. Z. Norman and D. W. Cartwright, Structural models: An introduction to the theory of directed graphs, Wiley Inter-Science, Inc., New York, 1965.
  6. F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
  7. G. T. Chartrand, Graphs as Mathematical Models, Prindle, Weber & Schmidt, Inc., Boston, Massachusetts 1977.
  8. G. Davis, G. Chen, F. Hall, Z. Li, M. Stewart and K. Patel, An interlacing result on normalized Laplacian, SIAM J. Discrete Math. 18(2004),353-361.
  9. I. M. Mladenov, M. D. Kotarov, J. G. Vassileva Popova, Method for Computing the Characteristic Polynomial, International Journal of Quantum Chemistry. 10(8),339-341 (1980), (ISSN:0020-7608-80).
  10. J. P. Grossman, An eigenvalue bound for the Laplacian of a graph, Discrete Math. 300 (2005), 225-228.
  11. I. Gutman. O. E. Polansky, Mathematical Concepts in Organic Chemistry. Springer Verlag., Berlin (1988).
  12. U. Le Verrier: Sur les variations sculaires des lments des orbites pour les sept plantes principales, J. de Math. (1) 5, 230 (1840), Online
  13. N. Trinajstic, Chemical Graph Theory, Vols. I and II, CRC, Boca Raton, FL,(1983).
  14. N. Trinajstic, The characteristic polynomial of a chemical graph, J. Math. Chem. 2 (3), 197-215(1988).
  15. U. J. J. Le Verrier, J. Math. 5 (95), 220 (1840).
  16. P. S. Dwyer, Linear Computations, p. 225, Wiley, New York,(1951).
  17. K. Balssubramanian, Spectra of chemical trees, Int. J. Quant. Chem. 21, 581-590(1982).
  18. K. Balasubramanian, Characteristic polynomials of organic polymers and periodic structures, J. Comput. Chem. 6 (6), 656-661(1985).
  19. B. Prashanth, K. Nagendra Naik and R. Salastina M. A remark on Normalized Laplacian eigen values of Signed graph, Journal of Applied Mathematics, Statistics and Informatics18(1) (2022), 109-124. (ISSN (print): 1336-9180,(ISSN (on-line): 1339-0015, Poland)).
  20. N. Biggs, Algebraic Graph Theory, Cambridge, Univer. Press, 2nd edition, 1993.
  21. F. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics 92, AMS,Providence, 1997.
DOI: https://doi.org/10.2478/jamsi-2024-0008 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 67 - 76
Published on: Dec 22, 2024
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 M. Abhishek, B. Prashanth, K. Permi, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.