Have a personal or library account? Click to login
Coefficient inequalities for a subclass of analytic functions associated with exponential function Cover

Coefficient inequalities for a subclass of analytic functions associated with exponential function

By:
G. Singh and  G. Singh  
Open Access
|Jan 2023

References

  1. S. Altinkaya and S. Yalcin, Third Hankel determinant for Bazilevic functions, Adv. Math., Scientific Journal, 5(2)(2016), 91-96.
  2. M. Arif, M. Raza, H. Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17(2019), 1615-1630.
  3. K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Ineq. Th. Appl., 6(2010), 1-7.
  4. L. Bieberbach,Über die koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der Wissenschaften, 138(1916), 940-955.
  5. R. Bucur, D. Breaz and L. Georgescu, Third Hankel determinant for a class of analytic functions with respect to symmetric points, Acta Univ. Apulensis, 42(2015), 79-86.
  6. L. De-Branges, A proof of the Bieberbach conjecture, Acta Math., 154(1985), 137-152.
  7. R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000), 557-560.
  8. M. Fekete and G. Szegö, Eine Bemer Kung uber ungerade schlichte Functionen, J. Lond. Math. Soc., 8(1933), 85-89.
  9. K. Ganesh, R. B. Sharma and K. R. Laxmi, Third Hankel determinant for a class of functions with respect to symmetric points associated with exponential function, WSEAS Trans. Math., 19(2020), 133-138.
  10. A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(13)(2007), 619-625.
  11. S. R. Keogh and E. P. Merkes, A coefficient inequality for certain subclasses of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
  12. V. S. Kumar and R. B. Sharma, A study on Zalcman conjecture and third Hankel determinant, J. Phy.: Conference Series, 1597(2020).
  13. J. W. Layman, The Hankel transform and some of its properties, J. Int. Seq., 4(2001), 1-11.
  14. R. J. Libera and E. J. Zlotkiewiez, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(1982), 225-230.
  15. R. J. Libera and E. J. Zlotkiewiez, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), 251-257.
  16. W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234(1999), 328-329.
  17. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), 532-537.
  18. T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(1963), 514-520.
  19. B. S. Mehrok and G. Singh, Estimate of second Hankel determinant for certain classes of analytic functions, Scientia Magna, 8(3)(2012), 85-94.
  20. R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38(1)(2015), 365-386.
  21. G. Murugusundramurthi and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1(3)(2009), 85-89.
  22. J. W. Noonan and D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 223(2)(1976), 337-346.
  23. K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28(8)(1983), 731-739.
  24. Ch. Pommerenke, Univalent functions, Math. Lehrbucher, Vandenhoeck and Ruprecht, Gottingen, 1975.
  25. M. O. Reade, On close-to-convex univalent functions, Michigan Math. J., 3(1955-56), 59-62.
  26. G. Shanmugam, B. A. Stephen and K. O. Babalola, Third Hankel determinant for α starlike functions, Gulf J. Math., 2(2)(2014), 107-113.
  27. G. Singh, Hankel determinant for a new subclass of analytic functions, Scientia Magna, 8(4)(2012), 61-65.
  28. G. Singh and G. Singh, On third Hankel determinant for a subclass of analytic functions, Open Sci. J. Math. Appl., 3(6)(2015), 172-175.
  29. H. Y. Zhang, H. Tang and X. M. Niu, Third order Hankel determinant for certain class of analytic functions related with exponential function, Symmetry, 10(501)(2018), doi: <a href="https://doi.org/10.3390/sym.10100501." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/sym.10100501.</a>
DOI: https://doi.org/10.2478/jamsi-2022-0009 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 5 - 18
Published on: Jan 19, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 G. Singh, G. Singh, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.